login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102685 Partial sums of A055640. 30
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

LINKS

Hieronymus Fischer, Table of n, a(n) for n = 0..10000

FORMULA

From Hieronymus Fischer, Jun 06 2012 (Start):

a(n) = (1/2)*sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).

a(n) = (n+1)*A055640(n) + (1/2)*sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).

a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)

G.f.: g(x) = (1/(1-x)^2) * sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

CROSSREFS

Cf. A027868, A054899, A055640, A055641, A102669-A102684, A117804, A122840, A122841, A160093, A160094, A196563, A196564.

Cf. A000120, A000788, A023416, A059015 (for base 2).

Sequence in context: A317622 A331400 A067082 * A032960 A117804 A088235

Adjacent sequences:  A102682 A102683 A102684 * A102686 A102687 A102688

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 10:01 EDT 2021. Contains 346446 sequences. (Running on oeis4.)