login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A055640.
30

%I #24 Nov 16 2022 14:53:25

%S 0,1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,29,31,33,35,37,39,

%T 41,43,45,47,48,50,52,54,56,58,60,62,64,66,67,69,71,73,75,77,79,81,83,

%U 85,86,88,90,92,94,96,98,100,102,104,105,107,109,111,113,115,117,119,121,123

%N Partial sums of A055640.

%C The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - _Hieronymus Fischer_, Jun 10 2012

%H Hieronymus Fischer, <a href="/A102685/b102685.txt">Table of n, a(n) for n = 0..10000</a>

%F From _Hieronymus Fischer_, Jun 06 2012: (Start)

%F a(n) = (1/2)*Sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).

%F a(n) = (n+1)*A055640(n) + (1/2)*Sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).

%F a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)

%F G.f.: g(x) = (1/(1-x)^2) * Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

%Y Cf. A027868, A054899, A055640, A055641, A102669-A102684, A117804, A122840, A122841, A160093, A160094, A196563, A196564.

%Y Cf. A000120, A000788, A023416, A059015 (for base 2).

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Feb 03 2005