|
|
A027868
|
|
Number of trailing zeros in n!; highest power of 5 dividing n!.
|
|
67
|
|
|
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
Alternatively, a(n) equals the expansion of the base-5 representation A007091(n) of n (i.e., where successive positions from right to left stand for 5^n or A000351(n)) under a scale of notation whose successive positions from right to left stand for (5^n - 1)/4 or A003463(n); for instance, n = 7392 has base-5 expression 2*5^5 + 1*5^4 + 4*5^3 + 0*5^2 + 3*5^1 + 2*5^0, so that a(7392) = 2*781 + 1*156 + 4*31 + 0*6 + 3*1 + 2*0 = 1845. - Lekraj Beedassy, Nov 03 2010
|
|
REFERENCES
|
Gardner, M. "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Factorial
|
|
FORMULA
|
a(n) = Sum_{i>=1} floor(n/5^i).
G.f.: g(x) = Sum_{k>0} x^(5^k)/(1-x^(5^k))/(1-x).
a(n) = Sum_{k=5..n} Sum_{j|k, j>=5} (floor(log_5(j)) - floor(log_5(j-1))).
G.f.: g(x) = L[b(k)](x)/(1-x)
where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = 1, if k>1 is a power of 5, else b(k) = 0.
G.f.: g(x) = Sum_{k>0} c(k)*x^k/(1-x),
where c(k) = Sum_{j>1, j|k} floor(log_5(j)) - floor(log_5(j - 1)).
Recurrence:
a(n) = floor(n/5) + a(floor(n/5));
a(5*n) = n + a(n);
a(n*5^m) = n*(5^m-1)/4 + a(n).
a(k*5^m) = k*(5^m-1)/4, for 0 <= k < 5, m >= 0.
Asymptotic behavior:
a(n) = n/4 + O(log(n)),
a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.
a(n) <= (n-1)/4; equality holds for powers of 5.
a(n) >= n/4 - 1 - floor(log_5(n)); equality holds for n = 5^m-1, m > 0.
lim inf (n/4 - a(n)) = 1/4, for n -> oo.
lim sup (n/4 - log_5(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_5(n)) = 0, for n -> oo.
(End)
|
|
EXAMPLE
|
a(100) = 24.
a(10^3) = 249.
a(10^4) = 2499.
a(10^5) = 24999.
a(10^6) = 249998.
a(10^7) = 2499999.
a(10^8) = 24999999.
a(10^9) = 249999998.
a(10^n) = 10^n/4 - 3 for 10 <= n <= 15 except for a(10^14) = 10^14/4 - 2. - M. F. Hasler, Dec 27 2019
|
|
MAPLE
|
0, seq(add(floor(n/5^i), i=1..floor(log[5](n))), n=1..100); # Robert Israel, Nov 13 2014
|
|
MATHEMATICA
|
Table[t = 0; p = 5; While[s = Floor[n/p]; t = t + s; s > 0, p *= 5]; t, {n, 0, 100} ]
zOF[n_Integer?Positive]:=Module[{maxpow=0}, While[5^maxpow<=n, maxpow++]; Plus@@Table[Quotient[n, 5^i], {i, maxpow-1}]]; Attributes[zOF]={Listable}; Join[{0}, zOF[ Range[100]]] (* Harvey P. Dale, Apr 11 2022 *)
|
|
PROG
|
(Haskell)
a027868 n = sum $ takeWhile (> 0) $ map (n `div`) $ tail a000351_list
(Python)
from sympy import multiplicity
for n in range(5, 10**3, 5):
p5 += multiplicity(5, n)
(Python)
(Magma) [Valuation(Factorial(n), 5): n in [0..80]]; // Bruno Berselli, Oct 11 2021
|
|
CROSSREFS
|
Cf. A054899, A007953, A112765, A067080, A098844, A132027, A067080, A098844, A132029, A054999, A112765, A191610, A000351.
|
|
KEYWORD
|
nonn,base,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|