login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027865
Sums of six consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.
11
55, 91, 139, 199, 271, 355, 451, 559, 679, 811, 955, 1111, 1279, 1459, 1651, 1855, 2071, 2299, 2539, 2791, 3055, 3331, 3619, 3919, 4231, 4555, 4891, 5239, 5599, 5971, 6355, 6751, 7159, 7579, 8011, 8455, 8911, 9379, 9859, 10351, 10855, 11371, 11899, 12439, 12991
OFFSET
0,1
COMMENTS
From Jean-Christophe Hervé, Nov 11 2015: (Start)
a(n) is defined for n < 0 and a(-n) = a(n-5) for any n; a(-4) = a(-1) = 31, a(-3) = a(-2) = 19.
a(n) == 3 (mod 4) for all n in Z, hence a(n) is never square.
(End)
FORMULA
a(n) = 6*n^2 + 30*n + 55.
G.f.: (55 - 74*x + 31*x^2) / (1-x)^3. - R. J. Mathar, Jun 11 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 12*(n+2). - Jean-Christophe Hervé, Nov 11 2015
E.g.f.: (55 + 36*x + 6*x^2)*exp(x). - G. C. Greubel, Aug 25 2022
Sum_{n>=0} 1/a(n) = tanh(sqrt(35/3)*Pi/2)*Pi/(2*sqrt(105)) - 50/589. - Amiram Eldar, Sep 15 2022
MAPLE
A027865:=n->6*n^2 + 30*n + 55: seq(A027865(n), n=0..60); # Wesley Ivan Hurt, Nov 12 2015
MATHEMATICA
Table[Total@ Map[#^2 &, n + Range[0, 5]], {n, 0, 34}] (* Michael De Vlieger, Nov 12 2015 *)
Total/@Partition[Range[0, 40]^2, 6, 1] (* or *) Table[6x^2+30x+55, {x, 0, 40}] (* Harvey P. Dale, Mar 23 2018 *)
PROG
(PARI) a(n)=6*n^2+30*n+55 \\ Charles R Greathouse IV, Jul 28 2015
(PARI) Vec((-31*x^2+74*x-55)/(x-1)^3 + O(x^50)) \\ Altug Alkan, Nov 12 2015
KEYWORD
nonn,easy
EXTENSIONS
Corrected by Ralf Stephan, Jan 02 2005
Edited by Charles R Greathouse IV, Jul 25 2010
Renamed by Jean-Christophe Hervé, Nov 12 2015
STATUS
approved