OFFSET
0,1
COMMENTS
From Jean-Christophe Hervé, Nov 11 2015: (Start)
a(n) is defined for n < 0 and a(-n) = a(n-5) for any n; a(-4) = a(-1) = 31, a(-3) = a(-2) = 19.
a(n) == 3 (mod 4) for all n in Z, hence a(n) is never square.
(End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Patrick De Geest, World!Of Numbers.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 6*n^2 + 30*n + 55.
G.f.: (55 - 74*x + 31*x^2) / (1-x)^3. - R. J. Mathar, Jun 11 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 12*(n+2). - Jean-Christophe Hervé, Nov 11 2015
E.g.f.: (55 + 36*x + 6*x^2)*exp(x). - G. C. Greubel, Aug 25 2022
Sum_{n>=0} 1/a(n) = tanh(sqrt(35/3)*Pi/2)*Pi/(2*sqrt(105)) - 50/589. - Amiram Eldar, Sep 15 2022
MAPLE
MATHEMATICA
Table[Total@ Map[#^2 &, n + Range[0, 5]], {n, 0, 34}] (* Michael De Vlieger, Nov 12 2015 *)
Total/@Partition[Range[0, 40]^2, 6, 1] (* or *) Table[6x^2+30x+55, {x, 0, 40}] (* Harvey P. Dale, Mar 23 2018 *)
PROG
(PARI) a(n)=6*n^2+30*n+55 \\ Charles R Greathouse IV, Jul 28 2015
(PARI) Vec((-31*x^2+74*x-55)/(x-1)^3 + O(x^50)) \\ Altug Alkan, Nov 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected by Ralf Stephan, Jan 02 2005
Edited by Charles R Greathouse IV, Jul 25 2010
Renamed by Jean-Christophe Hervé, Nov 12 2015
STATUS
approved