

A001844


Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.
(Formerly M3826 N1567)


322



1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

These are Hogben's central polygonal numbers denoted by
...2...
....P..
...4.n.
a(n) = 1 + 3 + 5 + ... + 2*n1 + 2*n+1 + 2*n1 + ... + 3 + 1.  Amarnath Murthy, May 28 2001
Numbers of the form (k^2+1)/2 for k odd.
(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100.  Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002
a(n) is also the number of 3 X 3 magic squares with sum 3(n+1).  Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002
For n > 0, a(n) is the smallest k such that zeta(2)  Sum_{i=1..k} 1/i^2 <= zeta(3)  Sum_{i=1..n} 1/i^3.  Benoit Cloitre, May 17 2002
Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.
First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k  1)).  Lekraj Beedassy, Jun 04 2006
Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876).  Artur Jasinski, Feb 04 2007
If X is an nset and Y and Z disjoint 2subsets of X then a(n4) is equal to the number of 4subsets of X intersecting both Y and Z.  Milan Janjic, Aug 26 2007
Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...).  Gary W. Adamson, Sep 02 2007
n such that the Diophantine equation x^3  y^3 = x*y + n has a solution with y = x1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = n. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it.  James R. Buddenhagen, Aug 12 2008
Numbers n such that (n, n, 2*n2) are the sides of an isosceles triangle with integer area. Also, n such that 2*n1 is a square.  James R. Buddenhagen, Oct 17 2008
a(n) is also the least weight of selfconjugate partitions having n+1 different odd parts.  Augustine O. Munagi, Dec 18 2008
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...).  Gary W. Adamson, Jan 03 2009
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n1)+1, all tuples of square numbers (XY, X, X+Y) are produced by ((m*(a(n)2n))^2, (m*a(n))^2, (m*(a(n)+2n2)))^2) where m is a whole number.  Doug Bell, Feb 27 2009
Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4).  Gary W. Adamson, May 01 2009
The running sum of squares taken two at a time.  Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals the odd integers convolved with (1, 2, 2, 2, ...).  Gary W. Adamson, May 25 2009
When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal.  Joshua Zucker, Jul 07 2009
The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41.  Gary W. Adamson, Jul 15 2010
Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)
For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence.  James R. Buddenhagen, Aug 15 2010
Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n,2n^2 + 2n + 1]; its value equals the rational number 2n +1 + a(n) / (4*n^4 + 8*n^3 + 6*n^2 + 2*n + 1).  J. M. Bergot, Sep 30 2011
a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given NivenZuckermanMontgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17.  Wolfdieter Lang, Mar 08 2012
a(n) is congruent to 1 (mod 4) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.
The units' digits of the a(n) form a purely periodic palindromic 5cycle 1, 5, 3, 5, 1.
(End)
Number of integer solutions (x,y) of x + y <= n. Geometrically: number of lattice points inside a square with vertex (n,0), (0,n), (n,0), (0,n).  César Eliud Lozada, Sep 18 2012
(a(n)1)/a(n) = 2*x / (1+x^2) where x = (n1)/n. Note that in this form, this is the velocityaddition formula according to the special theory of relativity (two objects traveling at 1/n slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer).  Christian N. K. Anderson, May 20 2013
A geometric curiosity: the envelope of the circles x^2 + (ya(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex.  JeanFrançois Alcover, Dec 02 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; sequence gives number of internal regions into which the plane is divided (cf. A051890, A046092); a(n1) = A051890(n)  1 = A046092(n1)  2.  Jaroslav Krizek, Dec 27 2013
a(n) is also, of course, the scalar product of the 2vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(1) = (1/v^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7  1.12, pp. 714. See also the Oct 15 2014 comment in A147973.  Wolfdieter Lang, Nov 06 2014
The number of active (ON,black) cells in nth stage of growth of twodimensional cellular automaton defined by "Rule 574", based on the 5celled von Neumann neighborhood.  Robert Price, May 13 2016
a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4.  Patrick J. McNab, Dec 24 2016
Central elements of oddlength rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)th row of this triangle.  David James Sycamore, Aug 01 2018
An offdiagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences.  Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023
a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof.  Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting.  Manfred Boergens, Feb 22 2022
a(n) is (1/6) times the number of 2 X 2 triangles in the nth order hexagram with 12*n^2 cells.  Donghwi Park, Feb 06 2024


REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, 1976, page 3.
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.


LINKS

D. C. Haws, Matroids [Broken link, Oct 30 2017]
D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
D. C. Haws, Matroids [Cached copy, pdf file only]
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)


FORMULA

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=1), z(k+1) = 1/(z(k)+2i).  Benoit Cloitre, Aug 06 2002
G.f.: (1+x)^2/(1x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n1) + 4n.
a(n) = a(n1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j.  Xavier Acloque, Oct 08 2003
a(n) = Sum_{k=0..n+1} (1)^k*binomial(n, k)*Sum_{j=0..nk+1} binomial(nk+1, j)*j^2.  Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2).  Paul Barry, Jul 16 2006
a(n) = 3*a(n1)  3*a(n2) + a(n3), a(0)=1, a(1)=5, a(2)=13.  Jaume Oliver Lafont, Dec 02 2008
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n1)+1.  Doug Bell, Feb 27 2009
a(n) = 2*a(n1)  a(n2) + 4.  Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = Pi/2*tanh(Pi/2) = 1.4406595199775... = A228048.  Ant King, Jun 15 2012
Sum_{n>=0} (1)^(n+1)*a(n)/n! = exp(1) = A068985. (End)
a(n) = Integral_{x=0..2n+2} 1x dx.  Pedro Caceres, Dec 29 2020
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1  1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)


EXAMPLE

G.f. = 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to a(n) = 0,1,2,3, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1.  Augustine O. Munagi, Dec 18 2008


MAPLE



MATHEMATICA

Table[2n(n + 1) + 1, {n, 0, 50}]
maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n  1)*x)/(1  x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n  1, n  1}]] (* L. Edson Jeffery, Aug 24 2014 *)
CoefficientList[ Series[(x^2 + 2x + 1)/(x  1)^3, {x, 0, 48}], x] (* or *)
Total/@Partition[Range[0, 50]^2, 2, 1] (* Harvey P. Dale, Dec 05 2020 *)
Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,


PROG

(PARI) {a(n) = 2*n*(n+1) + 1};
(PARI) x='x+O('x^200); Vec((1+x)^2/(1x)^3) \\ Altug Alkan, Mar 23 2016
(Sage) [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
(Haskell)
a001844 n = 2 * n * (n + 1) + 1
a001844_list = zipWith (+) a000290_list $ tail a000290_list


CROSSREFS

Cf. A000217, A000290, A001263, A001788, A002061, A004431 (numbers that are the sum of 2 distinct nonzero squares), A005448, A005891, A008844 (terms which are perfect squares), A048395, A051890, A056106, A127876, A128064, A132778, A147973, A153869, A240876, A251599 A000982, A080827, A008288.
Row n=2 (or column k=2) of A008288.


KEYWORD

nonn,easy,nice


AUTHOR



EXTENSIONS



STATUS

approved



