OFFSET

0,2

COMMENTS

These are Hogben's central polygonal numbers denoted by

...2...

....P..

...4.n.

a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001

Numbers of the form (k^2+1)/2 for k odd.

(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100. - Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002

a(n) is also the number of 3 X 3 magic squares with sum 3(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002

For n > 0, a(n) is the smallest k such that zeta(2) - Sum_{i=1..k} 1/i^2 <= zeta(3) - Sum_{i=1..n} 1/i^3. - Benoit Cloitre, May 17 2002

Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.

The prime terms are given by A027862. - Lekraj Beedassy, Jul 09 2004

First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k - 1)). - Lekraj Beedassy, Jun 04 2006

Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876). - Artur Jasinski, Feb 04 2007

If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007

Row sums of triangle A132778. - Gary W. Adamson, Sep 02 2007

Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...). - Gary W. Adamson, Sep 02 2007

Narayana transform (A001263) of [1, 4, 0, 0, 0, ...]. Equals A128064 (unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Dec 29 2007

n such that the Diophantine equation x^3 - y^3 = x*y + n has a solution with y = x-1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = n. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it. - James R. Buddenhagen, Aug 12 2008

Numbers n such that (n, n, 2*n-2) are the sides of an isosceles triangle with integer area. Also, n such that 2*n-1 is a square. - James R. Buddenhagen, Oct 17 2008

a(n) is also the least weight of self-conjugate partitions having n+1 different odd parts. - Augustine O. Munagi, Dec 18 2008

Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...). - Gary W. Adamson, Jan 03 2009

Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n-1)+1, all tuples of square numbers (X-Y, X, X+Y) are produced by ((m*(a(n)-2n))^2, (m*a(n))^2, (m*(a(n)+2n-2))^2) where m is a whole number. - Doug Bell, Feb 27 2009

Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4). - Gary W. Adamson, May 01 2009

The running sum of squares taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009

Equals the odd integers convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 25 2009

Equals the triangular numbers convolved with [1, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009

When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal. - Joshua Zucker, Jul 07 2009

The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41. - Gary W. Adamson, Jul 15 2010

From Keith Tyler, Aug 10 2010: (Start)

Running sum of A008574.

Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)

For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence. - James R. Buddenhagen, Aug 15 2010

Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n,2n^2 + 2n + 1]; its value equals the rational number 2n +1 + a(n) / (4*n^4 + 8*n^3 + 6*n^2 + 2*n + 1). - J. M. Bergot, Sep 30 2011

a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given Niven-Zuckerman-Montgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17. - Wolfdieter Lang, Mar 08 2012

From Ant King, Jun 15 2012: (Start)

a(n) is congruent to 1 (mod 4) for all n.

The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.

The units' digits of the a(n) form a purely periodic palindromic 5-cycle 1, 5, 3, 5, 1.

(End)

Number of integer solutions (x,y) of |x| + |y| <= n. Geometrically: number of lattice points inside a square with vertex (n,0), (0,-n), (-n,0), (0,n). - César Eliud Lozada, Sep 18 2012

(a(n)-1)/a(n) = 2*x / (1+x^2) where x = (n-1)/n. Note that in this form, this is the velocity-addition formula according to the special theory of relativity (two objects traveling at 1/n slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer). - Christian N. K. Anderson, May 20 2013

A geometric curiosity: the envelope of the circles x^2 + (y-a(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex. - Jean-François Alcover, Dec 02 2013

Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; sequence gives number of internal regions into which the plane is divided (cf. A051890, A046092); a(n-1) = A051890(n) - 1 = A046092(n-1) - 2. - Jaroslav Krizek, Dec 27 2013

a(n) is also, of course, the scalar product of the 2-vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2-space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(-1) = (1/|v|^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7 - 1.12, pp. 7-14. See also the Oct 15 2014 comment in A147973. - Wolfdieter Lang, Nov 06 2014

Subsequence of A004431, for n >= 1. - Bob Selcoe, Mar 23 2016

Numbers n such that 2n - 1 is a perfect square. - Juri-Stepan Gerasimov, Apr 06 2016

The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 574", based on the 5-celled von Neumann neighborhood. - Robert Price, May 13 2016

a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4. - Patrick J. McNab, Dec 24 2016

Central elements of odd-length rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)-th row of this triangle. - David James Sycamore, Aug 01 2018

An off-diagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences. - Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023

a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof. - Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting. - Manfred Boergens, Feb 22 2022

a(n) is (1/6) times the number of 2 X 2 triangles in the n-th order hexagram with 12*n^2 cells. - Donghwi Park, Feb 06 2024

REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.

A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.

Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.

S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.

Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.

U. Alfred, n and n+1 consecutive integers with equal sums of squares, Math. Mag., 35 (1962), 155-164.

Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.

Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.

Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.

Arthur T. Benjamin and Doron Zeilberger, Pythagorean Primes and Palindromic Continued Fractions, Electronic Journal of Combinatorial Number Theory, 5(1) 2005, #A30.

J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, arXiv:0710.4346 [math.CO], 2007; Discrete Comput. Geom., 42 (2009), 670-702.

FiveThirtyEight, "Riddler Express" paper cutting problem and solution, Jan 28 2022.

D. C. Haws, Matroids [Broken link, Oct 30 2017]

D. C. Haws, Matroids [Copy on website of Matthias Koeppe]

D. C. Haws, Matroids [Cached copy, pdf file only]

L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, pp. 22 and 36.

Milan Janjic, Two Enumerative Functions. [Broken link; WayBackMachine archive.]

Milan Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.

Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.

Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.

Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.

Ron Knott, Pythagorean Triples and Online Calculators.

G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.

G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)

A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.

Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

John A. Jr. Rochowicz, Harmonic Numbers: Insights, Approximations and Applications, Spreadsheets in Education (eJSiE), 2015, Vol. 8: Iss. 2, Article 4.

Amelia Carolina Sparavigna, Groupoid of OEIS A001844 Numbers (centered square numbers), Politecnico di Torino, Italy (2019).

R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.

David James Sycamore, Triangular array

Leo Tavares, Illustration: Diamond Rows

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Eric Weisstein's World of Mathematics, Centered Polygonal Number, Centered Square Number, Diamond, Pythagorean Triple, and von Neumann Neighborhood.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.

a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002

Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003

G.f.: (1+x)^2/(1-x)^3.

E.g.f.: exp(x)*(1+4x+2x^2).

a(n) = a(n-1) + 4n.

a(-n) = a(n-1).

a(n) = A064094(n+3, n) (fourth diagonal).

a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003

a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004

a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008

a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009

Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009

a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010

a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012

a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012

a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013

a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013

a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014

a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016

From Ilya Gutkovskiy, Jul 30 2016: (Start)

a(n) = Sum_{k=0..n} A008574(k).

Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)

a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017

Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020

a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020

From Amiram Eldar, Feb 17 2021: (Start)

Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).

Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)

EXAMPLE

G.f. = 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...

The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...

The first four such partitions, corresponding to a(n) = 0,1,2,3, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - Augustine O. Munagi, Dec 18 2008

MAPLE

A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation

MATHEMATICA

Table[2n(n + 1) + 1, {n, 0, 50}]

FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)

maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)

CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)

LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)

Total/@Partition[Range[0, 50]^2, 2, 1] (* Harvey P. Dale, Dec 05 2020 *)

Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,

j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)

PROG

(PARI) {a(n) = 2*n*(n+1) + 1};

(PARI) x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016

(Sage) [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008

(Haskell)

a001844 n = 2 * n * (n + 1) + 1

a001844_list = zipWith (+) a000290_list $ tail a000290_list

-- Reinhard Zumkeller, Dec 04 2012

(Magma) [2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013

(Magma) [n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016

(Python) print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021

CROSSREFS

Cf. A000217, A000290, A001263, A001788, A002061, A004431 (numbers that are the sum of 2 distinct nonzero squares), A005448, A005891, A008844 (terms which are perfect squares), A048395, A051890, A056106, A127876, A128064, A132778, A147973, A153869, A240876, A251599 A000982, A080827, A008288.

Row n=2 (or column k=2) of A008288.

Cf. A016754.

KEYWORD

nonn,easy,nice

AUTHOR

EXTENSIONS

Partially edited by Joerg Arndt, Mar 11 2010

STATUS

approved