login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099776
Length of the hypotenuse of an integer right triangle with the hypotenuse being one more than the longer side. The shorter sides are just consecutive odd numbers 3, 5, 7, ...
9
5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
OFFSET
1,1
COMMENTS
Largest hypotenuse of primitive Pythagorean triangles with inradius n. (For smallest hypotenuse of PPT with inradius n, see A087484.) Essentially the same as A001844. - Lekraj Beedassy, May 08 2006
The complete triple {X(n), Y(n), Z(n)=Y(n)+1}, with X<Y<Z, {X(n) = A005408(n); Y(n) = A046092(n), Z(n) = A001844(n)} may be recursively generated through the mapping W(n) -> M*W(n), where W(n) = transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [1 -2 2 / 2 -1 2 / 2 -2 3 ]. Such triples correspond to successive number pair Pythagorean generators(p,q=p+1) yielding {X=p+q,Y=2p*q,Z=p^2 + q^2}. - Lekraj Beedassy, Jun 04 2006
Sum of two consecutive squares: 1^4=5, 4+9=13, 9+16=25, 16+25=41, ... - Vladimir Joseph Stephan Orlovsky, Sep 25 2009
The sequence provides all integers m > 1 such that 2*m - 1 is a square. - Vincenzo Librandi, Mar 03 2013
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
FORMULA
a(n) = ((2*n+1)^2 -1)/2 + 1.
a(n) = a(n-1) + 4*n for n>1, a(1)=5. - Vincenzo Librandi, Nov 17 2010
From Colin Barker, Nov 03 2012: (Start)
a(n) = 1 + 2*n + 2*n^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(5 -2*x +x^2)/(1-x)^3. (End)
All other formulas given in A001844 also apply, with the restriction n>0. - M. F. Hasler, Nov 03 2012
E.g.f.: -1 +(1 +4*x +2*x^2)*exp(x). - G. C. Greubel, Sep 04 2019
MAPLE
seq(n^2 +(n+1)^2, n=1..50); # G. C. Greubel, Sep 04 2019
MATHEMATICA
Table[n^2 +(n+1)^2, {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2009, modified by G. C. Greubel, Sep 04 2019 *)
RecurrenceTable[{a[1]==5, a[n]==a[n-1] +4n}, a, {n, 50}] (* Vincenzo Librandi, Mar 03 2013 *)
LinearRecurrence[{3, -3, 1}, {5, 13, 25}, 50] (* Harvey P. Dale, Jul 16 2018 *)
PROG
(C) #include "stdio.h"
int main(int argc, char* argv[]){
unsigned long i; int L = (argc>1) ? atol(argv[1]) : 50;
for (i=(L>0) ? 1 : (L*=-1); i<=L; i++)
printf ("%u, ", (i+1)*i*2+1);
return 0;
} // optional arg implemented by M. F. Hasler, Nov 03 2012
(Magma) [n eq 1 select 5 else Self(n-1)+4*n: n in [1..50]]; // Vincenzo Librandi, Mar 03 2013
(PARI) a(n)=1+2*n+2*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n^2 +(n+1)^2 for n in (1..50)] # G. C. Greubel, Sep 04 2019
(GAP) List([1..50], n-> n^2 +(n+1)^2); # G. C. Greubel, Sep 04 2019
(Python)
def A099776(n): return (n<<1)*(n+1)+1 # Chai Wah Wu, Oct 01 2024
CROSSREFS
Sequence in context: A081961 A096891 A001844 * A301302 A133322 A299258
KEYWORD
easy,nonn
AUTHOR
Nick Robins (nrobins(AT)hackettfreedman.com), Nov 12 2004
STATUS
approved