login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099774
Number of divisors of 2*n-1.
39
1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 6, 2, 3, 4, 2, 4, 4, 2, 2, 6, 4, 2, 4, 2, 2, 6, 4, 2, 5, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 8, 2, 2, 4, 2, 4, 6, 4, 3, 4, 4, 2, 4, 2, 4, 8, 2, 2, 4, 4, 4, 6, 2, 2, 6, 4, 2, 4, 4, 2, 8, 2, 3, 6, 2, 6, 4, 2, 2, 4, 4, 4, 8, 2, 2, 8, 2, 2, 4, 4, 4, 6, 4
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>0} x^k/(1-x^(2*k-1)). - Michael Somos, Sep 02 2006
G.f.: sum(k>=1, x^((2*k-1)^2/2+1/2) * (1+x^(2*k-1))/(1-x^(2*k-1)) ). - Joerg Arndt, Nov 08 2010
Dirichlet g.f. (with interpolated zeros): zeta(s)^2*(1-1/2^s)^2. - Geoffrey Critzer, Feb 15 2015
Sum_{k=1..n} a(k) ~ (n*log(n) + (2*gamma - 1 + 3*log(2))*n)/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
EXAMPLE
a(5)=3 because the divisors of 9 are: 1, 3 and 9.
MAPLE
with(numtheory): seq(tau(2*n-1), n=1..120);
MATHEMATICA
nn = 200;
f[list_, i_] := list[[i]]; a =Table[Boole[OddQ[n]], {n, 1, nn}]; Select[Table[DirichletConvolve[f[a, n], f[a, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Feb 15 2015 *)
Table[DivisorSigma[0, 2*n-1], {n, 1, 100}] (* Vaclav Kotesovec, Jan 14 2019 *)
PROG
(PARI) {a(n)=if(n<1, 0, numdiv(2*n-1))} /* Michael Somos, Sep 03 2006 */
(Haskell)
a099774 = a000005 . a005408 -- Reinhard Zumkeller, Sep 22 2014
(Magma) [NumberOfDivisors(2*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 18 2015
(GAP) List([1..120], n->Tau(2*n-1)); # Muniru A Asiru, Dec 21 2018
CROSSREFS
Bisection of A000005.
Sequence in context: A175778 A357039 A226182 * A305973 A290978 A142240
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 03 2004
STATUS
approved