OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>0} x^k/(1-x^(2*k-1)). - Michael Somos, Sep 02 2006
G.f.: sum(k>=1, x^((2*k-1)^2/2+1/2) * (1+x^(2*k-1))/(1-x^(2*k-1)) ). - Joerg Arndt, Nov 08 2010
Dirichlet g.f. (with interpolated zeros): zeta(s)^2*(1-1/2^s)^2. - Geoffrey Critzer, Feb 15 2015
Sum_{k=1..n} a(k) ~ (n*log(n) + (2*gamma - 1 + 3*log(2))*n)/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
EXAMPLE
a(5)=3 because the divisors of 9 are: 1, 3 and 9.
MAPLE
with(numtheory): seq(tau(2*n-1), n=1..120);
MATHEMATICA
nn = 200;
f[list_, i_] := list[[i]]; a =Table[Boole[OddQ[n]], {n, 1, nn}]; Select[Table[DirichletConvolve[f[a, n], f[a, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Feb 15 2015 *)
Table[DivisorSigma[0, 2*n-1], {n, 1, 100}] (* Vaclav Kotesovec, Jan 14 2019 *)
PROG
(PARI) {a(n)=if(n<1, 0, numdiv(2*n-1))} /* Michael Somos, Sep 03 2006 */
(Haskell)
a099774 = a000005 . a005408 -- Reinhard Zumkeller, Sep 22 2014
(Magma) [NumberOfDivisors(2*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 18 2015
(GAP) List([1..120], n->Tau(2*n-1)); # Muniru A Asiru, Dec 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 03 2004
STATUS
approved