login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147973
a(n) = -2*n^2 + 12*n - 14.
24
-4, 2, 4, 2, -4, -14, -28, -46, -68, -94, -124, -158, -196, -238, -284, -334, -388, -446, -508, -574, -644, -718, -796, -878, -964, -1054, -1148, -1246, -1348, -1454, -1564, -1678, -1796, -1918, -2044, -2174, -2308, -2446, -2588, -2734, -2884, -3038, -3196, -3358
OFFSET
1,1
COMMENTS
-a(n+3) = 2*n^2 - 4, n >= 0, [-4,-2, 4, 14, ...] appears as the first member of the quartet for the square of [n, n+1, n+2, n+3], for n >= 0, in the Clifford algebra Cl_2. The other members are given in A046092(n), A054000(n+1) and A139570(n). The basis of Cl_2 is <1, s1, s2, s12> with s1.s1 = s2.s2 = 1, s12.s12 = -1, s1.s2 = -s2.s1 = s12. See e.g., pp. 5-6, eqs. (2.4)-(2.13) of the S. Gull et al. reference. - Wolfdieter Lang, Oct 15 2014
Related to the previous comment: if one uses the exterior (Grassmann) product with s1.s1 = s2.s2 = s12.s12 = 0 and s1.s2 = -s2.s1 = s12, then the four components of the square of [n, n+1, n+2, n+3] are [A000290(n), A046092(n), A054000(n+1), A139570(n)], n >= 0. - Wolfdieter Lang, Nov 13 2014
2 - a(n)/2 is a square. - Bruno Berselli, Apr 10 2018
LINKS
S. Gull, A. Lasenby and C. Doran, Imaginary Numbers are not Real - the Geometric Algebra of Spacetime, Found. Phys., Vol. 23(9) (1993), pp. 1175-1201.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
a(n) = -2*A008865(n-3). - J. M. Bergot, Jun 25 2018
G.f.: -2*x*(2 - 7*x + 7*x^2)/(1 - x)^3. - Colin Barker, Feb 12 2019
E.g.f.: -2*(exp(x)*(x^2 - 5*x + 7) - 7). - Elmo R. Oliveira, Nov 17 2024
MAPLE
[-2*n^2+12*n-14$n=1..50]; # Muniru A Asiru, Feb 12 2019
MATHEMATICA
lst={}; Do[k=n^2-((n-1)^2+(n-2)^2+(n-3)^2); AppendTo[lst, k], {n, 5!}]; lst
Table[-2n^2+12n-14, {n, 1, 50}] (* Vincenzo Librandi, Jul 10 2012 *)
LinearRecurrence[{3, -3, 1}, {-4, 2, 4}, 50] (* Harvey P. Dale, Mar 02 2020 *)
PROG
(Magma) [-2*n^2+12*n-14: n in [1..50]]; // Vincenzo Librandi, Jul 10 2012
(PARI) a(n)=-2*n^2+12*n-14 \\ Charles R Greathouse IV, Sep 24 2015
(PARI) Vec(-2*x*(2 - 7*x + 7*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Feb 12 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
STATUS
approved