login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139570
a(n) = 2*n*(n+3).
16
0, 8, 20, 36, 56, 80, 108, 140, 176, 216, 260, 308, 360, 416, 476, 540, 608, 680, 756, 836, 920, 1008, 1100, 1196, 1296, 1400, 1508, 1620, 1736, 1856, 1980, 2108, 2240, 2376, 2516, 2660, 2808, 2960, 3116, 3276, 3440, 3608, 3780, 3956, 4136, 4320, 4508, 4700, 4896
OFFSET
0,2
COMMENTS
Numbers n such that 2*n + 9 is a square. - Vincenzo Librandi, Nov 24 2010
a(n) appears also as the fourth member of the quartet [p0(n), p1(n), p2(n), a(n)] of the square of [n, n+1, n+2, n+3] in the Clifford algebra Cl_2 for n >= 0. p0(n) = -A147973(n+3), p1(n) = A046092(n), and p2(n) = A054000(n+1). See a comment on A147973, also with a reference. - Wolfdieter Lang, Oct 15 2014
FORMULA
a(n) = 2*A028552(n) = 2*n^2 + 6*n = n*(2*n+6).
a(n) = a(n-1) + 4*n + 4 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Paul Curtz, Mar 27 2011: (Start)
a(n) = A022998(n)*A022998(n+3).
a(n) = 4*A000096(n). (End)
G.f.: 4*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 31 2011
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=1} 1/a(n) = 11/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/3 - 5/36. (End)
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 2*exp(x)*x*(4 + x).
a(n) = n*A020739(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
CoefficientList[Series[4 x (2 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, May 23 2014 *)
PROG
(PARI) a(n)=2*n*(n+3) \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, May 19 2008
STATUS
approved