OFFSET
0,1
COMMENTS
Pisot sequence T(6,8).
Trivial case of a Pisot sequence satisfying a simple linear recurrence. Here, since round((2*n+2)^2/(2*n)^2) = 2*n + round((n+1)/n^2) = 2*n for n > 2, a(n) is even and a(n) = a(n-1) + 2. - Ralf Stephan, Sep 03 2013
LINKS
Tanya Khovanova, Recursive Sequences.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: 2*(3 - 2*x)/(1 - x)^2.
E.g.f.: 2*exp(x)*(3 + x).
MATHEMATICA
2*Range[0, 70]+6 (* or *) Range[6, 138, 2] (* Harvey P. Dale, Apr 24 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better name from Ralf Stephan, Sep 03 2013
STATUS
approved