



6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Pisot sequence T(6,8).
Trivial case of a Pisot sequence satisfying a simple linear recurrence. Here, since round((2n+2)^2/(2n)^2) = 2n + round((n+1)/n^2) = 2n for n>2, a(n) is even and a(n) = a(n1) + 2.  Ralf Stephan, Sep 03 2013


LINKS

Table of n, a(n) for n=0..66.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (2, 1).


FORMULA

a(n) = 2a(n1)  a(n2).


MATHEMATICA

2*Range[0, 70]+6 (* or *) Range[6, 138, 2] (* Harvey P. Dale, Apr 24 2017 *)


CROSSREFS

Subsequence of A005843. See A008776 for definitions of Pisot sequences.
Sequence in context: A065985 A233421 A060652 * A064466 A026286 A187085
Adjacent sequences: A020736 A020737 A020738 * A020740 A020741 A020742


KEYWORD

nonn,easy


AUTHOR

David W. Wilson


EXTENSIONS

Better name from Ralf Stephan, Sep 03 2013


STATUS

approved



