The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028557 a(n) = n*(n+5). 33
0, 6, 14, 24, 36, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre formula of the recurrence b(n)=5*b(n-1)+t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular sqrt(5^2+4*t) is an integer since 5^2+4*t=5^2+4*a(m)=(2*m+5)^2. Thus the characteristic roots are r1=m+5 and r2=-m. - Felix P. Muga II, Mar 27 2014
LINKS
Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
FORMULA
a(n) = 2*A055998(n).
a(n) = 2*n+a(n-1)+4. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 137/300 = 0.4566666... - R. J. Mathar, Mar 22 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/5 - 47/300. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -24*cos(sqrt(29)*Pi/2)/(7*Pi).
Product_{n>=1} (1 + 1/a(n)) = 8*cos(sqrt(21)*Pi/2)/Pi. (End)
MATHEMATICA
Table[n(n+5), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
PROG
(PARI) a(n)=n*(n+5) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A005281 A120345 A107400 * A104675 A083657 A228435
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 11:18 EDT 2024. Contains 373331 sequences. (Running on oeis4.)