login
A374987
Let s(x) be the Maclaurin series for cos(x); then a(n) is the least index k for which all partial sums of cos(2m*Pi) are positive.
4
6, 14, 24, 32, 40, 48, 58, 66, 74, 82, 92, 100, 108, 116, 126, 134, 142, 150, 160, 168, 176, 184, 194, 202, 210, 218, 228, 236, 244, 254, 262, 270, 278, 288, 296, 304, 312, 322, 330, 338, 346, 356, 364, 372, 382, 390, 398, 406, 416, 424, 432, 440, 450, 458
OFFSET
0,1
EXAMPLE
For n=1, the partial sums (for k = 0,1,2,3,4,5,6,7) are approximately 1, -18.7, 46.2, -39.2, 20.9, -5.4, 2.4, 0.7; beginning with k=6, the partials sums are all positive, so a(1)=6.
MATHEMATICA
z = 800; r = Pi;
f[m_, n_] := f[m, n] = N[Sum[(-1)^k (2 m r)^(2 k)/(2 k)!, {k, 0, n}], 10]
g[m_] := Select[Range[z], f[m, #] > 0 && f[m, # + 1] > 0 &, 1]
Flatten[Table[g[m], {m, 1, 80}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 01 2024
STATUS
approved