login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375054
Let M(n,x) denote the Maclaurin polynomial of degree 2n for cos x. Let u(n) be the number of nonreal zeros of M(n,x) and v(n) the number of real zeros of M(n,x). Then a(n) = u(n) - v(n).
6
-2, -4, 2, 0, 6, 4, 2, 8, 6, 4, 10, 8, 14, 12, 10, 16, 14, 12, 18, 16, 22, 20, 18, 24, 22, 28, 26, 24, 30, 28, 26, 32, 30, 36, 34, 32, 38, 36, 34, 40, 38, 44, 42, 40, 46, 44, 50, 48, 46, 52, 50, 48, 54, 52, 58, 56, 54, 60, 58, 64, 62, 60, 66, 64, 62, 68, 66
OFFSET
1,1
COMMENTS
1
EXAMPLE
The 6 zeros of the Maclaurin polynomial x^2/2! - x^4/4! - x^6/6! are approximately {-3.92 - 1.28 i, -3.92 + 1.2 i, -1.56, 1.56, 3.92 - 1.28 i, 3.92 + 1.28 i}; there are 4 nonreal zero and 2 real zeros, so that a(3) = 4 - 2 = 2.
MATHEMATICA
z = 100;
a[n_] := CountRoots[Sum[(-1)^k*x^k/(2 k)!, {k, 0, n}], {x, 0, Infinity}];
t = 2 Table[a[n], {n, 1, z}] ; (* # real zeros of M(n, x) *)
2 Range[z] - t (* # nonreal zeros *)
2 Range[z] - 2 t (* # nonreal zeros minus # real zeros; *)
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Oct 01 2024
STATUS
approved