OFFSET
1,1
COMMENTS
1
EXAMPLE
The 6 zeros of the Maclaurin polynomial x^2/2! - x^4/4! - x^6/6! are approximately {-3.92 - 1.28 i, -3.92 + 1.2 i, -1.56, 1.56, 3.92 - 1.28 i, 3.92 + 1.28 i}; there are 4 nonreal zero and 2 real zeros, so that a(3) = 4 - 2 = 2.
MATHEMATICA
z = 100;
a[n_] := CountRoots[Sum[(-1)^k*x^k/(2 k)!, {k, 0, n}], {x, 0, Infinity}];
t = 2 Table[a[n], {n, 1, z}] ; (* # real zeros of M(n, x) *)
2 Range[z] - t (* # nonreal zeros *)
2 Range[z] - 2 t (* # nonreal zeros minus # real zeros; *)
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Oct 01 2024
STATUS
approved