login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366589
G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^2.
6
1, 0, 0, 0, 1, 1, 0, 0, 2, 4, 2, 0, 5, 15, 15, 5, 14, 56, 84, 56, 56, 210, 420, 420, 342, 834, 1980, 2640, 2409, 3795, 9141, 15015, 16445, 20449, 43043, 80509, 104962, 123838, 215072, 419848, 630838, 780572, 1164228, 2190552, 3629704, 4884100, 6760390, 11715210
OFFSET
0,9
LINKS
FORMULA
G.f.: A(x) = 2 / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(2*k,k)/(k+1).
(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0. - Robert Israel, Oct 14 2024
MAPLE
f:= gfun:-rectoproc({(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Oct 14 2024
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(2*k, k)/(k+1));
CROSSREFS
Cf. A366554.
Sequence in context: A127278 A378010 A356165 * A335764 A375054 A202069
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2023
STATUS
approved