OFFSET
0,9
LINKS
Robert Israel, Table of n, a(n) for n = 0..4920
FORMULA
G.f.: A(x) = 2 / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(2*k,k)/(k+1).
(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0. - Robert Israel, Oct 14 2024
MAPLE
f:= gfun:-rectoproc({(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Oct 14 2024
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(2*k, k)/(k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2023
STATUS
approved