login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335764 Decimal expansion of Sum_{k>=1} sigma(k)/(k*2^k) where sigma(k) is the sum of divisors of k (A000203). 3
1, 2, 4, 2, 0, 6, 2, 0, 9, 4, 8, 1, 2, 4, 1, 4, 9, 4, 5, 7, 9, 7, 8, 4, 5, 4, 8, 1, 8, 9, 4, 6, 2, 9, 6, 6, 8, 9, 7, 3, 4, 0, 3, 9, 7, 8, 2, 5, 0, 4, 2, 5, 8, 8, 4, 6, 2, 7, 1, 3, 8, 1, 6, 7, 2, 5, 3, 3, 9, 1, 1, 8, 4, 4, 7, 0, 6, 2, 8, 8, 4, 6, 5, 8, 2, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..87.

Maxie Dion Schmidt, A catalog of interesting and useful Lambert series identities, arXiv:2004.02976 [math.NT], 2020.

Eric Weisstein's World of Mathematics, Lambert Series.

Wikipedia, Lambert series.

FORMULA

Equals Sum_{k>=1} (A017665(k)/A017666(k))/2^k.

Equals Sum_{k>=1} 1/(k*(2^k - 1)) = Sum_{k>=1} 1/A066524(k).

Equals -Sum_{k>=1} log(1-2^(-k)).

EXAMPLE

1.242062094812414945797845481894629668973403978250425...

MATHEMATICA

RealDigits[Sum[1/n/(2^n - 1), {n, 1, 500}], 10, 100][[1]]

PROG

(PARI) suminf(x = 1, sigma(x)/(x*2^x)) \\ David A. Corneth, Jun 21 2020

CROSSREFS

Cf. A000203, A017665, A017666, A065442, A066524, A066766, A256936, A335763.

Sequence in context: A331144 A258711 A127278 * A202069 A300329 A094239

Adjacent sequences:  A335761 A335762 A335763 * A335765 A335766 A335768

KEYWORD

nonn,cons

AUTHOR

Amiram Eldar, Jun 21 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 05:30 EDT 2020. Contains 336197 sequences. (Running on oeis4.)