OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Numerators of coefficients in expansion of Sum_{n >= 1} x^n / (n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).
The primes in this sequence, in order of appearance (without multiplicity), begin: 3, 7, 2, 13, 31, 5, 127. The first occurrence of prime(k) = a(n) for k = 1, 2, 3, ... is at n = 6, 2, 24, 4, 35640, 9, 297600, 588, ... - Jonathan Vos Post, Apr 02 2011
Numerator of sigma(n)/n = A000203(n)/n. See A239578(n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Paul A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (4) (2000) 307-310.
Eric Weisstein's World of Mathematics, Abundancy.
FORMULA
a(n) = sigma(n)/gcd(n, sigma(n)). - Jon Perry, Jun 29 2003
Dirichlet g.f.: zeta(s)*zeta(s+1) [for fraction A017665/A017666]. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017666(k) = Pi^2/6 (A013661). - Amiram Eldar, Nov 21 2022
EXAMPLE
1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
MAPLE
with(numtheory): seq(numer(sigma(n)/n), n=1..74) ; # Zerinvary Lajos, Jun 04 2008
MATHEMATICA
Numerator[DivisorSigma[-1, Range[80]]] (* Harvey P. Dale, May 31 2013 *)
Table[Numerator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) a(n)=sigma(n)/gcd(n, sigma(n)) \\ Charles R Greathouse IV, Feb 11 2011
(PARI) a(n)=numerator(sigma(n, -1)) \\ Charles R Greathouse IV, Apr 04 2011
(Haskell)
import Data.Ratio ((%), numerator)
a017665 = numerator . sum . map (1 %) . a027750_row
-- Reinhard Zumkeller, Apr 06 2012
(Magma) [Numerator(DivisorSigma(1, n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
(Python)
from math import gcd
from sympy import divisor_sigma
def A017665(n): return (m:=divisor_sigma(n))//gcd(m, n) # Chai Wah Wu, Mar 20 2023
CROSSREFS
KEYWORD
nonn,frac,nice
AUTHOR
STATUS
approved