|
|
A002025
|
|
Smaller of an amicable pair: (a,b) such that sigma(a)=sigma(b)=a+b, a<b.
(Formerly M5414 N2352)
|
|
78
|
|
|
220, 1184, 2620, 5020, 6232, 10744, 12285, 17296, 63020, 66928, 67095, 69615, 79750, 100485, 122265, 122368, 141664, 142310, 171856, 176272, 185368, 196724, 280540, 308620, 319550, 356408, 437456, 469028, 503056, 522405, 600392, 609928
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sometimes called friendly numbers, but this usage is deprecated.
All terms are abundant (A005101). - Michel Marcus, Mar 10 2013
See A125490-A125492 and A137231 for amicable triples, A036471-A036474 and A116148 for amicable quadruples, and A233553 for amicable quintuples. - M. F. Hasler, Dec 14 2013
This sequence is strictly increasing (and A002046, which contains the larger (deficient) number in each pair, is sorted by this sequence). - Jeppe Stig Nielsen, Jan 27 2015
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015
Pomerance (1981) shows that there are at most x*exp(-log(x)^(1/3)) members of this sequence up to x. In particular, as originally demonstrated by Erdős, this sequence has density 0. - Charles R Greathouse IV, Aug 17 2017
|
|
REFERENCES
|
Mariano Garcia, Jan Munch Pedersen and Herman te Riele, Amicable pairs - a survey, pp. 179-196 in: Alf van der Poorten and Andres Stein (eds.), High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications, AMS, Providence RI, 2004.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe and Sergei Chernykh, Table of n, a(n) for n = 1..415523 [All terms up to 10^17. Terms 39375 through 415523 were computed by Sergei Chernykh]
J. Alanen, O. Ore and J. Stemple, Systematic computations on amicable numbers, Math. Comp., 21 (1967), 242-245.
J. Bell, A translation of Leonhard Euler's..., arXiv:math/0409196 [math.HO], 2004-2009.
W. Borho and H. Hoffmann, Breeding Amicable Numbers in Abundance, Math. Comp., 46 (1986), 281-293.
S. Chernykh, Amicable pairs list
Paul Erdős, On amicable numbers, Publ. Math. Debrecen 4 (1955), pp. 108-111.
E. B. Escott, Amicable numbers, Scripta Mathematica, 12 (1946), 61-72 [Annotated scanned copy]
L. Euler, De numeris amicabilibus, Opuscula varii argumetii, pages 23-107, 1750. Reprinted in Opera mathematica: Series prima. Volumen II, Leonhardi Euleri commentationes arithmeticae. Sub ausp. soc. scient. nat. Helv., Teubner, Leipzig, Series I, Vol. 1915, pp. 86-162.
M. Garcia, A Million New Amicable Pairs, J. Integer Seqs., Vol. 4 (2001), #01.2.6.
M. García, J. M. Pedersen, H. J. J. te Riele, Amicable pairs, a survey, Report MAS-R0307, Centrum Wiskunde & Informatica.
S. S. Gupta, Amicable Numbers
E. J. Lee, Amicable Numbers and the Bilinear Diophantine Equation, Math. Comp., 22 (1968), 181-187.
Hisanori Mishima, First 236 amicable pairs
D. Moews, Perfect, amicable and sociable numbers
J. O. M. Pedersen, Known Amicable Pairs [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
Carl Pomerance, On the distribution of amicable numbers, J. reine angew. Math. 293/294 (1977), pp. 217-222.
Carl Pomerance, On the distribution of amicable numbers, II, J. reine angew. Math. 325 (1981), pp. 183-188.
H. J. J. te Riele, Four large amicable pairs, Math. Comp., 28 (1974), 309-312.
H. J. J. te Riele, Computation of all the amicable pairs below 10^10, Math. Comp., 47 (1986), 361-368 and Supplement pp. S9-S40.
H. J. J. te Riele et al., Table of Amicable Pairs between 10^10 and 10^52, Note NM-N8603, Department of Numerical Mathematics, Centre for Mathematics and Computer Science, Amsterdam, 1986, (warning: file size is 65MB).
T. Trotter, Jr., Amicable Numbers [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - N. J. A. Sloane, Mar 29 2018]
Eric Weisstein's World of Mathematics, Amicable Pair.
|
|
FORMULA
|
a(n) = A259180(2n-1) = A180164(n) - A259180(2n) = A180164(n) - A002046(n). - Omar E. Pol, Jul 15 2015
|
|
MATHEMATICA
|
Reap[For[n = 1, n <= 10^6, n++, If[(s = DivisorSigma[1, n]) > 2n && DivisorSigma[1, s - n] == s, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 09 2015, after M. F. Hasler *)
|
|
PROG
|
(PARI) aliquot(n)=sigma(n)-n
isA002025(n)={local(a); a=aliquot(n); a>n && aliquot(a)==n} \\ Michael B. Porter, Apr 11 2010
(PARI) for(n=1, 1e6, (s=sigma(n))>2*n && sigma(s-n)==s && print1(n", ")) \\ M. F. Hasler, Dec 14 2013
(PARI) forfactored(n=1, 10^6, t=sigma(n[2])-n[1]; if(t>n[1] && sigma(t)==n[1]+t, print1(n[1]", "))) \\ Charles R Greathouse IV, Aug 17 2017
|
|
CROSSREFS
|
Cf. A000203, A002046, A063990, A066873, A180164, A259180.
Sequence in context: A257354 A102073 A234969 * A260086 A339678 A339682
Adjacent sequences: A002022 A002023 A002024 * A002026 A002027 A002028
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Oct 24 2000
|
|
STATUS
|
approved
|
|
|
|