login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259180 Amicable pairs. 19
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 76084, 66928, 66992, 67095, 71145, 69615, 87633, 79750, 88730, 100485, 124155, 122265, 139815, 122368, 123152, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A pair of numbers x and y is called amicable if the sum of the proper divisors (or aliquot parts) of either one is equal to the other.

This is A002025 and A002046 interleaved hence the amicable pairs (x < y), ordered by increasing x, are adjacent to each other in the list.

By definition a property of the amicable pair (x, y) is that x + y = sigma(x) = sigma(y).

Amicable numbers A063990 are the terms of this sequence in increasing order.

First differs from A063990 at a(18).

For another version see A259933.

First differs from A259933 at a(17).

LINKS

Table of n, a(n) for n=1..46.

Titu Andreescu, Number Theory Trivia: Amicable Numbers

Titu Andreescu, Number Theory Trivia: Amicable Numbers

Anonymous, Amicable Pairs Applet Test

Anonymous, Amicable and Social Numbers [broken link]

S. Chernykh, Amicable pairs list

G. D'Abramo, On Amicable Numbers With Different Parity, arXiv:math/0501402 [math.HO], 2005-2007.

E. B. Escott, Amicable numbers, Scripta Mathematica, 12 (1946), 61-72 [Annotated scanned copy]

Leonhard Euler, On amicable numbers, arXiv:math/0409196 [math.HO], 2004-2009.

Mariano Garcia, A Million New Amicable Pairs, J. Integer Sequences, 4 (2001), #01.2.6.

M. García, J. M. Pedersen, H. J. J. te Riele, Amicable pairs, a survey, Report MAS-R0307, Centrum Wiskunde & Informatica.

S. S. Gupta, Amicable Numbers

Hisanori Mishima, Amicable Numbers:first 236 pairs(smaller member<10^8) fully factorized

David Moews, A List Of The First 5001 Amicable Pairs

David and P. C. Moews, A List Of Amicable Pairs Below 2.01*10^11

Number Theory List, NMBRTHRY Archives--August 1993

Jan Munch Pedersen, Known Amicable Pairs [Broken link]

Jan Munch Pedersen, Tables of Aliquot Cycles [Broken link]

Ivars Peterson, MathTrek, Appealing Numbers

Ivars Peterson, MathTrek, Amicable Pairs, Divisors and a New Record

Herman J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984), 219-223.

Herman J. J. te Riele, Computation of all the amicable pairs below 10^10, Math. Comp., 47 (1986), 361-368 and Supplement pp. S9-S40.

Herman J. J. te Riele, A New Method for Finding Amicable Pairs, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.

Ed Sandifer, Amicable numbers

Gérard Villemin's Almanach of Numbers, Nombres amiables et sociables

Eric Weisstein's World of Mathematics, Amicable Pair

Wikipedia, Amicable number

FORMULA

a(2n-1) = A002025(n); a(2n) = A002046(n).

a(2n-1) + a(2n) = A000203(a(2n-1)) = A000203(a(2n)) = A180164(n).

EXAMPLE

------------------------------------

       Amicable pair          Sum

          x      y           x + y

------------------------------------

n     A002025 A002046      A180164

------------------------------------

1        220     284          504

2       1184    1210         2394

3       2620    2924         5544

4       5020    5564        10584

5       6232    6368        12600

6      10744   10856        21600

7      12285   14595        26880

8      17296   18416        35712

9      63020   76084       139104

10     66928   66992       133920

11     67095   71145       138240

12     69615   87633       157248

...      ...     ...          ...

The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The smallest amicable pair is (220, 284), so a(1) = 220 and a(2) = 284.

MATHEMATICA

f[n_] := Block[{s = {}, g, k}, g[x_] := DivisorSigma[1, x] - x; Do[k = g@ i; If[And[g@ k == i, k != i, ! MemberQ[s, i]], s = s~Join~{i, k}], {i, n}]; s]; f@ 300000 (* Michael De Vlieger, Jul 02 2015 *)

CROSSREFS

Cf. A000203, A001065, A002025, A002046, A063990, A066539, A180164, A180202, A259933.

Sequence in context: A121507 A255215 A063990 * A259933 A273259 A262624

Adjacent sequences:  A259177 A259178 A259179 * A259181 A259182 A259183

KEYWORD

nonn

AUTHOR

Omar E. Pol, Jun 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 27 20:09 EDT 2017. Contains 289866 sequences.