login
A234969
Abundant numbers whose aliquot sequence is abundant, deficient, abundant, ..., etc.
1
220, 1064, 1184, 2172, 2620, 5020, 6232, 10744, 12285, 17296, 63020, 66928, 67095, 69615, 79750, 80535, 83655, 86086, 100485, 122265, 122368, 141664, 142310, 146344, 171856, 173500, 176272, 177340, 185368, 191260, 196724, 280540, 308620, 319550, 333920
OFFSET
1,1
COMMENTS
All smaller members of an amicable pair (A002025) belong to this sequence.
Also abundant members of the sociable quadruple represented in A222977 are here.
Starting at k=3, I found 1, 7, 18, 63, 160, 331, 858 terms up to 10^k.
EXAMPLE
The aliquot sequence 220->284->220->... has the requested form, so 220 is here.
1064 is here too since its aliquot sequence is 1064->1336->1184->1210->... .
PROG
(PARI) isAmicable(n)={my(a=sigma(n)-n); (a<>n) && (sigma(a)-a)==n; } \\ from A063990
isSociableADAD(n)={my(a=sigma(n)-n); if (!a, return (0)); my(b=sigma(a)-a); if(! b, return (0)); my(c=sigma(b)-b); if (!c, return (0)); my(d=sigma(c)-c); if (d != n, return (0)); ((n>a) && (a<b) && (b>c) && (c<n)) || ((n<a) && (a>b) && (b<c) && (c>n)); }
isok(n) = {my(oldn = n); my(newn = sigma(oldn) - oldn); my(dir = sign(newn - oldn)); if (!dir || (dir < 0), return (0)); oldn = newn; while (1, newn = sigma(oldn) - oldn; ndir = sign(newn - oldn); if (!ndir || (ndir == dir), return (0)); if (isAmicable(oldn), return(1)); if (isSociableADAD(oldn), return(1)); oldn = newn; dir = ndir; ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 02 2014
STATUS
approved