The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001160 sigma_5(n), the sum of the 5th powers of the divisors of n. (Formerly M5240 N2279) 136
 1, 33, 244, 1057, 3126, 8052, 16808, 33825, 59293, 103158, 161052, 257908, 371294, 554664, 762744, 1082401, 1419858, 1956669, 2476100, 3304182, 4101152, 5314716, 6436344, 8253300, 9768751, 12252702, 14408200, 17766056, 20511150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1). Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/504. - Simon Plouffe, Mar 01 2021 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_6(z). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. Index entries for sequences related to sigma(n) FORMULA Multiplicative with a(p^e) = (p^(5e+5)-1)/(p^5-1). - David W. Wilson, Aug 01 2001 G.f.: sum(k>=1, k^5*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003 Dirichlet g.f.: zeta(s)*zeta(s-5). - R. J. Mathar, Mar 06 2011 G.f. also (1 - E_6(q))/540, with the g.f. E_6 of A013973. See Hardy p. 166, (10.5.7) with R = E_6. - Wolfdieter Lang, Jan 31 2017 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^4)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017 a(n) = Sum_{1 <= i, j, k, l, m <= n} tau(gcd(i, j, k, l, m, n)) = Sum_{d divides n} tau(d) * J_5(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 22 2024 MAPLE A001160 := proc(n) numtheory[sigma][5](n); end proc: seq(A001160(n), n=1..30) ; # R. J. Mathar, Jan 31 2017 MATHEMATICA lst={}; Do[AppendTo[lst, DivisorSigma[5, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) DivisorSigma[5, Range[30]] (* Harvey P. Dale, Nov 11 2013 *) PROG (Sage) [sigma(n, 5) for n in range(1, 30)] # Zerinvary Lajos, Jun 04 2009 (PARI) a(n)=sigma(n, 5) \\ Charles R Greathouse IV, Apr 28 2011 (Magma) [DivisorSigma(5, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013 CROSSREFS Cf. A000005, A000203, A001157, A001158, A001159, A013973, A000584 (Mobius transform), A178448 (Dirichlet inverse) Sequence in context: A034679 A351300 A017673 * A294300 A271208 A343499 Adjacent sequences: A001157 A001158 A001159 * A001161 A001162 A001163 KEYWORD nonn,easy,mult AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)