login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178448
Dirichlet inverse of A001160, sigma_5.
7
1, -33, -244, 32, -3126, 8052, -16808, 0, 243, 103158, -161052, -7808, -371294, 554664, 762744, 0, -1419858, -8019, -2476100, -100032, 4101152, 5314716, -6436344, 0, 3125, 12252702, 0, -537856, -20511150, -25170552, -28629152, 0, 39296688, 46855314, 52541808
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: 1/(zeta(s)*zeta(s-5)). - R. J. Mathar, Mar 10 2011
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^5. - Ilya Gutkovskiy, Nov 06 2018
Multiplicative with a(p) = -1 - p^5, a(p^2) = p^5, and a(p^e) = 0 for e>=3. - Amiram Eldar, Sep 16 2020
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -Sum[ DivisorSigma[5, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jun 24 2013 *)
f[p_, e_] := If[e == 1, -p^5 - 1, If[e == 2, p^5, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) A178448_vec(len)={
a063524=vector(len) ; a063524[1] = 1 ;
a001160=direuler(p=2, len, 1/(1-p^5*X)/(1-X)) ;
dirdiv(a063524, a001160) ; }
{ A178448_vec(70) } /* R. J. Mathar, Mar 10 2011 */
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^5); \\ Michel Marcus, Nov 06 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^5*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020
CROSSREFS
KEYWORD
sign,mult
AUTHOR
R. J. Mathar, Dec 22 2010
EXTENSIONS
More terms from Amiram Eldar, Sep 16 2020
STATUS
approved