OFFSET
0,4
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..227 (terms 0..100 from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
S. Brassesco, M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894 [math.CA], 2010.
V. De Angelis, Stirling's series revisited, Amer. Math. Monthly, 116 (2009), 839-843.
N. Elezovic, Asymptotic Expansions of Central Binomial Coefficients and Catalan Numbers, J. Int. Seq. 17 (2014) # 14.2.1
Peter Luschny, Approximations to the factorial function
G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829. MR1080390 (92b:41049)
T. Mueller, Finite group actions and asymptotic expansion of e^P(z), Combinatorica, 17 (4) (1997), 523-554.
Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618 [math.NA], 2016.
N. M. Temme, The asymptotic expansion of the incomplete gamma function, SIAM J. Math. Anal., 10 (1979), 757-766. [From N. J. A. Sloane, Feb 20 2012]
W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
Eric Weisstein's World of Mathematics, Stirling's Series.
J. W. Wrench, Jr., Concerning two series for the gamma function, Math. Comp., 22 (1968), 617-626.
FORMULA
The coefficients c_k have g.f. 1 + Sum_{k >= 1} c_k/z^k = exp( Sum_{k >= 1} B_{2k}/(2k(2k-1)z^(2k-1)) ).
Numerators/denominators: A001163(n)/A001164(n) = (6*n+1)!!/(4^n*(2*n)!) * Sum_{i=0..2*n} Sum_{j=0..i} Sum_{k=0..j} (-1)^k*2^i*k^(2*n+i+j)*C(2*n,i) *C(i,j)*C(j,k)/((2*n+2*i+1)*(2*n+i+j)!), assuming 0^0 = 1 (when n = 0), n!! = A006882(n), C(n,k) = A007318(n,k) are binomial coefficients. - Vladimir Reshetnikov, Nov 05 2015
From Seiichi Manyama, Sep 01 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/n) * Sum_{k=0..n-1} B_{n-k+1}*c_k/(n-k+1) for n > 0.
a(n) is the numerator of c_n. (End)
EXAMPLE
Gamma(z) ~ sqrt(2*Pi) * z^(z-1/2) * e^(-z) * (1 + 1/(12*z) + 1/(288*z^2) - 139/(51840*z^3) - 571/(2488320*z^4) + ... ), z -> infinity in |arg z| < Pi.
MAPLE
h := proc(k) option remember; local j; `if`(k=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
StirlingAsympt := proc(n) option remember; h(2*n)*2^n*pochhammer(1/2, n) end:
A001163 := n -> numer(StirlingAsympt(n));
seq(A001163(n), n=0..30); # Peter Luschny, Feb 08 2011
MATHEMATICA
Numerator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]]
(* Second program: *)
h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))];
StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n];
a[n_] := StirlingAsympt[n] // Numerator;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
PROG
(PARI) a(n)=local(A, m); if(n<1, n==0, A=vector(m=2*n+1, k, 1); for(k=2, m, A[k]=(A[k-1]-sum(i=2, k-1, i*A[i]*A[k+1-i]))/(k+1)); numerator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
(Sage)
def A001163(n):
@cached_function
def h(k):
if k<=0: return 1
S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
return (h(k-1)/k-S)/(1+1/(k+1))
return numerator(h(2*n)*2^n*rising_factorial(1/2, n))
[A001163(n) for n in range(17)] # Peter Luschny, Nov 05 2015
CROSSREFS
KEYWORD
sign,frac,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Nov 14 2001
Signs added by Robert G. Wilson v, Jul 12 2003
STATUS
approved