login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143476 Denominator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109. 10
1, 720, 7257600, 15676416000, 3476402012160000, 162695614169088000000, 4919915372473221120000000, 60219764159072226508800000000, 507464726196802564122476544000000000, 3288371425755280615513648005120000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In Glaisher (1878) equation (2) is "1^1.2^2.3^3 ... n^n = A n^(n^2/2 + n/2 + 1/12) e^(-n^4/4) (1 + 1/(720n^2) - 1433/(7257600n^4) + &c.)" - Michael Somos, Jun 24 2012

REFERENCES

Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

J. W. L. Glaisher, On The Product 1^1.2^2.3^3 ... n^n, Messenger of Mathematics, 7 (1878), pp. 43-47, see p. 43 eq. (2)

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..148

Eric Weisstein's World of Mathematics, Hyperfactorial

FORMULA

From Seiichi Manyama, Aug 31 2018: (Start)

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence

c_0 = 1, c_n = (-1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.

a(n) is the denominator of c_n. (End)

EXAMPLE

(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4).

From Seiichi Manyama, Aug 31 2018: (Start)

c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 720.

c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = 7257600. (End)

CROSSREFS

Cf. A002109, A143475.

Sequence in context: A283830 A075754 A318711 * A008979 A158044 A181751

Adjacent sequences:  A143473 A143474 A143475 * A143477 A143478 A143479

KEYWORD

nonn,frac

AUTHOR

Eric W. Weisstein, Aug 19 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 19:57 EDT 2020. Contains 337273 sequences. (Running on oeis4.)