login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008979
a(n) = (6n)!/(n!)^6.
13
1, 720, 7484400, 137225088000, 3246670537110000, 88832646059788350720, 2670177736637149247308800, 85722533226982363751829504000, 2889253496242619386328267523990000, 101097362223624462291180422369532000000, 3644153415887633116359073848179365185734400, 134567406165969006655507763343147223231094784000
OFFSET
0,2
FORMULA
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*
binomial(5*n,n)*binomial(6*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(6*n) ) = [x^n](F(x)^(720*n)), where F(x) = 1 + x + 4478*x^2 + 53085611*x^3 + 926072057094*x^4 + 19977558181209910*x^5 + 493286693783478576177*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A008978, A186420 and A188662. (End)
a(n) ~ 3^(6*n+1/2)*4^(3*n-1)/(Pi*n)^(5/2). - Ilya Gutkovskiy, Jul 12 2016
From Peter Bala, Feb 14 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z*u*v)^n] (1 + x + y + z + u + v)^(6*n). (End)
MAPLE
seq( (6*n)!/(n!)^6, n=0..20); # G. C. Greubel, Feb 17 2020
MATHEMATICA
Table[(6 n)!/(n)!^6, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)
PROG
(Magma) [Factorial(6*n)/Factorial(n)^6: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
(PARI) vector(21, n, my(m=n-1); (6*m)!/(m!)^6 ) \\ G. C. Greubel, Feb 17 2020
(Sage) [factorial(6*n)/factorial(n)^6 for n in (0..20)] # G. C. Greubel, Feb 17 2020
KEYWORD
nonn,easy
STATUS
approved