login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188662
Binomial coefficients: a(n) = binomial(3*n,n)^2.
16
1, 9, 225, 7056, 245025, 9018009, 344622096, 13521038400, 540917591841, 21966328580625, 902702926350225, 37456461988358400, 1566697064677290000, 65973795093338597136, 2794203818390077646400, 118933541228935777741056, 5084343623375056062840609
OFFSET
0,2
COMMENTS
Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z^2 - x*y - y*z - x*z)). - Gheorghe Coserea, Aug 09 2018
LINKS
FORMULA
a(n) = A005809(n)^2.
a(n) = binomial(3*n,n)^2 = ( [x^n](1 + x)^(3*n) )^2 = [x^n](F(x)^(9*n)), where F(x) = 1 + x + 4*x^2 + 49*x^3 + 795*x^4 + 15180*x^5 + 320422*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977 and A186420. - Peter Bala, Jul 12 2016
a(n) ~ 3^(6*n+1)*4^(-2*n-1)/(Pi*n). - Ilya Gutkovskiy, Jul 13 2016
a(n) = Sum_{k=0..n} binomial(n, k)^2*binomial(3*n+k, 2*n). - Seiichi Manyama, Jan 09 2017
MATHEMATICA
Table[Binomial[3 n, n]^2, {n, 0, 16}]
PROG
(Maxima) makelist(binomial(3*n, n)^2, n, 0, 16);
(Magma) [Binomial(3*n, n)^2: n in [0..100]]; // Vincenzo Librandi, Apr 08 2011
(PARI) a(n) = binomial(3*n, n)^2; \\ Michel Marcus, Nov 01 2016
(Python)
from math import comb
def A188662(n): return comb(3*n, n)**2 # Chai Wah Wu, Mar 15 2023
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 07 2011
STATUS
approved