OFFSET
0,2
COMMENTS
Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z^2 - x*y - y*z - x*z)). - Gheorghe Coserea, Aug 09 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..604
FORMULA
a(n) = A005809(n)^2.
a(n) = binomial(3*n,n)^2 = ( [x^n](1 + x)^(3*n) )^2 = [x^n](F(x)^(9*n)), where F(x) = 1 + x + 4*x^2 + 49*x^3 + 795*x^4 + 15180*x^5 + 320422*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977 and A186420. - Peter Bala, Jul 12 2016
a(n) ~ 3^(6*n+1)*4^(-2*n-1)/(Pi*n). - Ilya Gutkovskiy, Jul 13 2016
a(n) = Sum_{k=0..n} binomial(n, k)^2*binomial(3*n+k, 2*n). - Seiichi Manyama, Jan 09 2017
MATHEMATICA
Table[Binomial[3 n, n]^2, {n, 0, 16}]
PROG
(Maxima) makelist(binomial(3*n, n)^2, n, 0, 16);
(Magma) [Binomial(3*n, n)^2: n in [0..100]]; // Vincenzo Librandi, Apr 08 2011
(PARI) a(n) = binomial(3*n, n)^2; \\ Michel Marcus, Nov 01 2016
(Python)
from math import comb
def A188662(n): return comb(3*n, n)**2 # Chai Wah Wu, Mar 15 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 07 2011
STATUS
approved