login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000897
a(n) = (4*n)! / ((2*n)!*n!^2).
22
1, 12, 420, 18480, 900900, 46558512, 2498640144, 137680171200, 7735904619300, 441233078286000, 25467973278667920, 1484298740174927040, 87202550985276963600, 5157850293780050462400, 306839461354466267304000, 18344908596179023234548480
OFFSET
0,2
COMMENTS
Appears in Ramanujan's theory of elliptic functions of signature 4.
H. A. Verrill proves that a(n) = Sum_{p + q + r = 3n} w^(p-q) * {(3n)!/(p! q! r!)}^2, with p, q, r >= 0 and w = primitive 3rd root of unity.
The family of elliptic curves "x=2*H1=p^2+q^2-(1/4)*q^4, 0<x<1" generates these a_n as the coefficients of the period-energy function "T(x)=2*Pi*2F1(1/4,3/4;1;x)". Applying complex transformation "q->sqrt(-1)*q" to H1 produces "x=2*H2=p^2-q^2-(1/4)*q^4, 0<x<1", with "T(x)=sqrt(2)*Pi*2F1(1/4,3/4;1;1-x)". This explains the appearance of factor sqrt(2)/2 in Ramanujan's nome q_1. - Bradley Klee, Feb 25 2018
Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z)). - Gheorghe Coserea, Aug 09 2018
REFERENCES
E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
LINKS
Alin Bostan, Armin Straub, and Sergey Yurkevich, On the representability of sequences as constant terms, arXiv:2212.10116 [math.NT], 2022.
B. Klee, Geometric G.F. for Ramanujan Periods, seqfan mailing list, 2017.
S. Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.
FORMULA
E.g.f.: Sum_{k>=0} (-1)^k * a(k) * x^(4*k) / (4*k)! = BesselI(0, 2x) * BesselJ(0, 2x).
G.f.: F(1/4, 3/4; 1; 64*x). - Michael Somos, Oct 31 2005
a(n) = A008977(n)/A000984(n) - Zerinvary Lajos, Jun 28 2007
Sum_{k>=0} a(k) * x^(3k)/(3k)!^2 = f(x)*f(x*w)*f(x/w) where f(x) = BesselI(0, 2*sqrt(x)) and w = primitive 3rd root of unity. - Michael Somos, Jul 25 2007
In general, for (BesselI(b, 2x))*(BesselJ(b, 2x))=((x^(2*b))/((GAMMA(b+1))^2)*(1-(x^4)/(Q(0)+(x^4))); Q(k)=(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)-(x^4)+(x^4)*(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence 0 = a(n)*4*(4*n + 1)*(4*n + 3) - a(n+1)*(n + 1)^2 for all n in Z. - Michael Somos, Aug 12 2014
0 = a(n)*(-4026531840*a(n+2) +2005401600*a(n+3) -103896576*a(n+4) +1251948*a(n+5)) + a(n+1)*(+41418752*a(n+2) -30435328*a(n+3) +1863228*a(n+4) -24604*a(n+5)) + a(n+2)*(-16896*a(n+2) +75608*a(n+3) -6740*a(n+4) +105*a(n+5)) for all n in Z. - Michael Somos, Aug 12 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(3*n,n)*binomial(4*n,n) = A005809(n)*A005810(n) = ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(12*n)), where F(x) = 1 + x + 6*x^2 + 105*x^3 + 2448*x^4 + 67043*x^5 + 2028307*x^6 + ... appears to have integer coefficients. Cf. A002894, A002897, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 2^(6*n-1/2)/(Pi*n). - Ilya Gutkovskiy, Jul 12 2016
G.f.: 2*EllipticK(sqrt((sqrt(1-64*x)-1)/(2*sqrt(1-64*x))))/(Pi*(1-64*x)^(1/4)) where EllipticK is the complete elliptic integral of the first kind (in Maple's notation). - Robert Israel, Jul 12 2016
a(n) = Sum_{k = 0..3*n} (-1)^k*C(3*n,k)*C(6*n-k,3*n)*C(2*k,k). - Peter Bala, Feb 10 2018
From Bradley Klee, Feb 27 2018: (Start)
a(n) = A000984(n)*A001448(n).
G.f.: (1/(sqrt(2)*Pi))*Integral_{q=-oo..oo} 1/sqrt(q^2+(1/4)*q^4+(1-64*x)) dq.
G.f.: (1/(2*Pi))*Integral_{phi=0..2*Pi} 1/sqrt(1-64*x*sin^4(phi)) dphi. (End)
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..2*n} 2*n*(2*n+k-1)!/(k!*n!^2) = (4*n)!/((2*n)!*n!^2);
(3/2)*Sum_{k = 0..n} 2*n*(3*n+k-1)!/(k!*n!*(2*n)!) = (4*n)!/((2*n)!*n!^2).
Cf. A001451. (End)
a(n) = (4^n/n!^2)*Product_{k = 0..2*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(3*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024
EXAMPLE
G.f.: 1 + 12*x + 420*x^2 + 18480*x^3 + 900900*x^4 + 46558512*x^5 + 2498640144*x^6 + ...
MAPLE
seq((4*n)!/(n!)^4/binomial(2*n, n), n=0..14); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Table[(4n)!/((2n)! n!^2), {n, 0, 30}] (* Stefan Steinerberger, Apr 14 2006 *)
a[ n_] := Binomial[ 4 n, 2 n] Binomial[ 2 n, n]; (* Michael Somos, Mar 24 2013 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 3/4, 1, 64 x], {x, 0, n}]; (* Michael Somos, Mar 24 2013 *)
a[ n_] := If[ n < 0, 0, With[{m = 4 n}, (-1)^n m! SeriesCoefficient[ BesselI[ 0, 2 x] BesselJ[ 0, 2 x], {x, 0, m}]]]; (* Michael Somos, Aug 12 2014 *)
a[ n_] := 64^n Pochhammer[1/4, n] Pochhammer[3/4, n] / n!^2; (* Michael Somos, Aug 12 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, (4*n)! / ((2*n)! * n!^2))}; /* Michael Somos, Oct 31 2005 */
(GAP) a:=n->Sum([0..3*n], k->(-1)^k*Binomial(3*n, k)*Binomial(6*n-k, 3*n)*
Binomial(2*k, k));;
A000897:=List([0..14], n->a(n)); # Muniru A Asiru, Feb 11 2018
CROSSREFS
Cf. A002897, A008977, A186420, A188662. Elliptic Integrals: A002894, A113424, A006480. Factors: A005809, A005810, A000984, A001448.
Sequence in context: A340306 A249065 A098602 * A036687 A262858 A123778
KEYWORD
nonn,easy
STATUS
approved