OFFSET
1,5
REFERENCES
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..200
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
FORMULA
MAPLE
For Maple program see A000903.
MATHEMATICA
a[n_] := ((n+1)! - (2*Floor[(n+1)/2])!! - 2*Sum[Binomial[n+1, 2*k]*(2*k-1)!!, {k, 0, (n+1)/2}] + 2*Sum[2^k*BellB[k]*StirlingS1[Floor[(n+1)/2], k], {k, 0, Floor[(n+1)/2]}])/8; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2013, from explicit formulas *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, May 09 2000
STATUS
approved