login
A000899
Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
(Formerly M4645 N1987)
23
0, 0, 0, 1, 9, 70, 571, 4820, 44676, 450824, 4980274, 59834748, 778230060, 10896609768, 163456629604, 2615335902176, 44460874280032, 800296440705472, 15205636325496568, 304112744618157872, 6386367741011250672
OFFSET
1,5
REFERENCES
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
FORMULA
a(n)=(A000142(n)-2*A000085(n)-A037223(n)+2*A000898(floor(n/2)))/8 (all of which have explicit formulas).
For asymptotics see the Robinson paper.
MAPLE
For Maple program see A000903.
MATHEMATICA
a[n_] := ((n+1)! - (2*Floor[(n+1)/2])!! - 2*Sum[Binomial[n+1, 2*k]*(2*k-1)!!, {k, 0, (n+1)/2}] + 2*Sum[2^k*BellB[k]*StirlingS1[Floor[(n+1)/2], k], {k, 0, Floor[(n+1)/2]}])/8; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2013, from explicit formulas *)
CROSSREFS
Cf. A000900.
Sequence in context: A110201 A045739 A098205 * A226013 A156705 A231419
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, May 09 2000
STATUS
approved