login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045739
Number of edges in all noncrossing forests on n nodes on a circle.
2
1, 9, 70, 535, 4101, 31633, 245512, 1915875, 15020545, 118231212, 933812892, 7397179309, 58746824150, 467602683135, 3729318261224, 29795160492299, 238421091129957, 1910544426355420, 15329353155160880, 123138401704273620
OFFSET
2,2
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} k*binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k).
a(n) = Sum_{k=1..n-1} k*A094040(n, k). - Andrew Howroyd, Nov 17 2017
Conjecture D-finite with recurrence -8*(n-1)*(42011*n-237357)*(2*n-1)*a(n) -2*(2*n-3)*(168044*n^2+2298095*n-1588326)*a(n-1) +2*(-8750238*n^3+268256261*n^2-1419101561*n+1999934970)*a(n-2) +4*(137297737*n^3-1755498200*n^2+7473395243*n-10564858105)*a(n-3) +5*(25384204*n^3-350504439*n^2+1587560537*n-2286713022)*a(n-4) -25*(n-4)*(n-7)*(3362075*n-9824604)*a(n-5)=0. - R. J. Mathar, Jul 26 2022
a(n) ~ sqrt(-1 + sqrt(115/111)*sin((Pi + arctan(411*sqrt(111)/2363))/3)) * ((8/3 + 2*sqrt(70)*(sin((Pi + arctan(4537/(111*sqrt(111))))/3)/3))^n / sqrt(Pi*n)). - Vaclav Kotesovec, Mar 08 2023
PROG
(PARI) a(n) = sum(k=1, n-1, k*binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k)); \\ Andrew Howroyd, Nov 12 2017
CROSSREFS
Cf. A094040.
Sequence in context: A167534 A110202 A110201 * A098205 A000899 A226013
KEYWORD
nonn
STATUS
approved