login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045740
Number of components in all forests on nodes on a circle.
1
1, 3, 12, 62, 370, 2397, 16345, 115376, 834786, 6152285, 45990120, 347673108, 2652283517, 20385035972, 157656007680, 1225743120520, 9572972899946, 75056029550721, 590469939950716, 4659115833115680, 36859770507695688
OFFSET
1,2
FORMULA
Sum(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k), k=1..n)
Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2 +24034951267*n -109031255382)*a(n) +2*(-15824420628*n^4 +759853283620*n^3 -1653756416501*n^2 -3170366114943*n +6074871939666) *a(n-1) +2*(1171007126472*n^4 -5580539787848*n^3 -21281457754861*n^2 +151349953543323*n -205322404158756) *a(n-2) +(530118091038*n^4 -3085109917817*n^3 -8408054715093*n^2 +76142928591932*n -101713943817720) *a(n-3)
-15*(n-3)*(n-6) *(23736630942*n^2 +73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
MAPLE
A045740 := proc(n)
local k ;
add(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k) , k=1..n) ;
end proc:
seq(A045740(n), n=1..30) ; # R. J. Mathar, Jul 22 2022
CROSSREFS
Sequence in context: A258798 A369709 A074516 * A187820 A074529 A143916
KEYWORD
nonn
STATUS
approved