login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143916
G.f. A(x) satisfies: A(x) = 1+x + x^2*A(x)*A'(x).
5
1, 1, 1, 3, 12, 62, 385, 2781, 22848, 210176, 2139336, 23872450, 289825228, 3803859030, 53676793157, 810508456373, 13041332257860, 222776899815744, 4026846590787586, 76792054455516582, 1540845309830989064
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * n!, where constant c = A238214 / exp(1) = 0.669014536209527303065690569951975534726... - Vaclav Kotesovec, Feb 21 2014
a(0) = 1, a(1) = 1, a(n) = Sum_{0 < k < n} k * a(k) * a(n-k-1). - Vladimir Reshetnikov, May 17 2016
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 12*x^4 + 62*x^5 + 385*x^6 +...
A'(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 310*x^4 + 2310*x^5 + 19467*x^6 +...
A(x)*A'(x) = 1 + 3*x + 12*x^2 + 62*x^3 + 385*x^4 + 2781*x^5 +...
MATHEMATICA
a[0] = 1; a[1] = 1; a[n_] := a[n] = Sum[k a[k] a[n-k-1], {k, 1, n-1}]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 17 2016 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv(A^2/2)); polcoeff(A, n)}
CROSSREFS
Cf. A143917 (variant), A238214.
Sequence in context: A045740 A187820 A074529 * A323630 A020033 A266329
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2008
STATUS
approved