The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266329 E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(x) * exp( Integral A(x) dx ), where the constant of integration is zero. 5
 1, 1, 3, 12, 62, 395, 2994, 26331, 263729, 2964845, 36975858, 506687604, 7568226163, 122388728056, 2130425343621, 39718373337525, 789613850257051, 16674806980716514, 372771700023167862, 8794945626017009781, 218392778569695964100, 5693513850197410142081, 155482323312112362743373, 4438621019461797437443233, 132210153223378852014571364, 4101859859297789141335079684, 132343983668857026899533814277 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to: G(x) = exp( Integral G(x) dx ) when G(x) = 1/(1-x). What is Limit (a(n)/n!)^(1/n) ?  Example: (a(300)/300!)^(1/300) = 1.2409703... Limit (a(n)/n!)^(1/n) = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.24008610649849766623949... - Vaclav Kotesovec, Aug 21 2017 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f. A(x) satisfies: (1) A(x) = exp( Integral A(x) + log(A(x)) dx ). (2) A(x) = A'(x)/A(x) - log(A(x)). (3) log(A(x)) = exp(x) * Integral exp(-x)*A(x) dx. (4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) + x) dx ) ). a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.2400861064984976662394901721056528110217273471501174317019052800276... - Vaclav Kotesovec, Aug 21 2017 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 62*x^4/4! + 395*x^5/5! + 2994*x^6/6! + 26331*x^7/7! + 263729*x^8/8! + 2964845*x^9/9! + 36975858*x^10/10! +... such that log(A(x)) = Integral B(x) dx where B(x) = 1 + 2*x + 5*x^2/2! + 17*x^3/3! + 79*x^4/4! + 474*x^5/5! + 3468*x^6/6! + 29799*x^7/7! + 293528*x^8/8! + 3258373*x^9/9! + 40234231*x^10/10! +... and A(x) and B(x) satisfy: (1) A(x) = B'(x)/B(x) - 1, (2) B(x) = A'(x)/A(x), (3) B(x) = A(x) + log(A(x)), (4) log(A(x)) = Integral B(x) dx, (5) log(B(x)) = Integral A(x) dx + x. The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + x) dx: Integral 1/(exp(x) + x) dx  =  x - 2*x^2/2! + 7*x^3/3! - 37*x^4/4! + 261*x^5/5! - 2301*x^6/6! + 24343*x^7/7! - 300455*x^8/8! + 4238153*x^9/9! - 67255273*x^10/10! +...+ (-1)^(n-1)*A072597(n-1)*x^n/n! +... so that A( Integral 1/(exp(x) + x) dx ) = exp(x). MATHEMATICA a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *) PROG (PARI) {a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 1 + A ) ) ); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + x) ) )), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A266328, A072597, A289739. Sequence in context: A143916 A323630 A020033 * A208734 A305536 A121123 Adjacent sequences:  A266326 A266327 A266328 * A266330 A266331 A266332 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 00:43 EDT 2021. Contains 343784 sequences. (Running on oeis4.)