login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072597 Expansion of 1/(exp(-x) - x) as exponential generating function. 11
1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Polynomials from A140749/A141412 are linked to Stirling1 (see A048594, A129841, A140749). See also P. Flajolet, X. Gourdon, B. Salvy in, available on Internet, RR-1857.pdf (preprint of unavailable Gazette des Mathematiciens 55, 1993, pp. 67-78; for graph 2 see also X. Gourdon RR-1852.pdf, pp. 64-65). What is the corresponding graph for A152650/A152656 = simplified A009998/A119502 linked, via A152818, to a(n), then Stirling2? - Paul Curtz, Dec 16 2008

Denominators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." Numerators in A006153. - Michael Somos, Jan 21 2019

Call an element g in a semigroup a group element if g^j = g for some j > 1. Then a(n) is the number of group elements in the semigroup of partial transformations of an n-set. Hence a(n) = Sum_{k=0..n} A154372(n,k)*k!. - Geoffrey Critzer, Nov 27 2021

REFERENCES

O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.

S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..411

W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013.

G. Jiraskova and J. Shallit, The state complexity of star-complement-star, arXiv preprint arXiv:1203.5353 [cs.FL], 2012. - From N. J. A. Sloane, Sep 21 2012

FORMULA

E.g.f.: 1 / (exp(-x) - x).

a(n) = n!*Sum_{k=0..n} (n-k+1)^k/k!. - Vladeta Jovovic, Aug 31 2003

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A052820(k). - Vladeta Jovovic, Apr 12 2004

Recurrence: a(n+1) = 1 + Sum_{j=1..n} binomial(n, j)*a(j)*j. - Jon Perry, Apr 25 2005

E.g.f.: 1/(Q(0) - x) where Q(k) = 1 - x/(2*k+1 - x*(2*k+1)/(x - (2*k+2)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 04 2013

a(n) ~ n!/((1+c)*c^(n+1)), where c = A030178 = LambertW(1) = 0.5671432904... - Vaclav Kotesovec, Jun 26 2013

O.g.f.: Sum_{k>=0} k!*x^k/(1 - (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018

EXAMPLE

G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...

MATHEMATICA

CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)

a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)

a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)

PROG

(PARI) {a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};

(PARI) {a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */

CROSSREFS

Cf. A000110, A006153, A030178, A089148.

Cf. A048993, A052820.

Cf. A154372.

Sequence in context: A338182 A135164 A321087 * A322140 A339459 A125515

Adjacent sequences:  A072594 A072595 A072596 * A072598 A072599 A072600

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jun 23 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 09:19 EDT 2022. Contains 356135 sequences. (Running on oeis4.)