login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152818
Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.
14
1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
OFFSET
0,5
COMMENTS
A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009
LINKS
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. See page 422.
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
FORMULA
E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)
EXAMPLE
From Omar E. Pol, Jan 06 2009: (Start)
Array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 18, 96, 600, 4320, ...
1, 12, 108, 960, 9000, 90720, ...
1, 32, 540, 7680, 105000, 1451520, ...
1, 80, 2430, 53760, 1050000, 19595520, ...
1, 192, 10206, 344064, 9450000, 235146240, ...
1, 448, 40824, 2064384, 78750000, 2586608640, ...
1, 1024, 157464, 11796480, 618750000, 26605117440, ...
1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
1;
1, 1;
1, 4, 2;
1, 12, 18, 6;
1, 32, 108, 96, 24;
1, 80, 540, 960, 600, 120;
1, 192, 2430, 7680, 9000, 4320, 720;
1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
MATHEMATICA
len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n, 0, m}, {k, 0, m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
PROG
(Sage)
def A152818_row(n):
R.<x> = ZZ[]
P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
return P.coefficients()
for n in (0..12): print(A152818_row(n)) # Peter Luschny, May 03 2013
(PARI) A(n, k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
(Magma)
A152818:= func< n, k | (k+1)^(n-k)*Factorial(k)*Binomial(n, k) >;
[A152818(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul Curtz, Dec 13 2008
EXTENSIONS
Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009
STATUS
approved