This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183158 T(n,k) is the number of partial isometries of an n-chain of fix k (fix of alpha is the number of fixed points of alpha). 4
 1, 1, 1, 4, 2, 1, 12, 6, 3, 1, 38, 10, 6, 4, 1, 90, 26, 10, 10, 5, 1, 220, 42, 15, 20, 15, 6, 1, 460, 106, 21, 35, 35, 21, 7, 1, 1018, 170, 28, 56, 70, 56, 28, 8, 1, 2022, 426, 36, 84, 126, 126, 84, 36, 9, 1, 4304, 682, 45, 120, 210, 252, 210, 120, 45, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS R. Kehinde, A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049 FORMULA T(n,0)= A183159(n). T(n,1)=A061547(n+1). T(n,k)=binomial(n,k), k > 1. EXAMPLE T (4,2) = 6 because there are exactly 6 partial isometries (on a 4-chain) of fix 2, namely: (1,2)-->(1,2); (2,3)-->(2,3); (3,4)-->(3,4); (1,3)-->(1,3); (2,4)-->(2,4); (1,4)-->(1,4) - the mappings are coordinate-wise. ...1. ...1....1. ...4....2....1. ..12....6....3....1. ..38...10....6....4....1. ..90...26...10...10....5....1. .220...42...15...20...15....6....1. .460..106...21...35...35...21....7....1. 1018..170...28...56...70...56...28....8....1. 2022..426...36...84..126..126...84...36....9....1. 4304..682...45..120..210..252..210..120...45...10....1. MAPLE A183159 := proc(n) nh := floor(n/2) ; if type(n, 'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc: A061547 := proc(n) 3*2^n/8 +(-2)^n/24 - 2/3; end proc: A183158 := proc(n, k) if k = 0 then A183159(n) ; elif k = 1 then A061547(n+1) ; else binomial(n, k) ; end if; end proc: # R. J. Mathar, Jan 06 2011 MATHEMATICA T[n_, 0] := (51*2^n + (-2)^n - 40)/12 - n*(n + 3); T[n_, 1] := (9*2^n + (-1)^(n+1)*2^n - 8)/12; T[n_, k_] := Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *) CROSSREFS Cf. A183156 (row sums). Sequence in context: A075397 A049429 A328647 * A174005 A152818 A302235 Adjacent sequences:  A183155 A183156 A183157 * A183159 A183160 A183161 KEYWORD nonn,tabl AUTHOR Abdullahi Umar, Dec 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 04:31 EST 2019. Contains 329850 sequences. (Running on oeis4.)