login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183158 T(n,k) is the number of partial isometries of an n-chain of fix k (fix of alpha is the number of fixed points of alpha). 4
1, 1, 1, 4, 2, 1, 12, 6, 3, 1, 38, 10, 6, 4, 1, 90, 26, 10, 10, 5, 1, 220, 42, 15, 20, 15, 6, 1, 460, 106, 21, 35, 35, 21, 7, 1, 1018, 170, 28, 56, 70, 56, 28, 8, 1, 2022, 426, 36, 84, 126, 126, 84, 36, 9, 1, 4304, 682, 45, 120, 210, 252, 210, 120, 45, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..65.

R. Kehinde, A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049

FORMULA

T(n,0)= A183159(n). T(n,1)=A061547(n+1). T(n,k)=binomial(n,k), k > 1.

EXAMPLE

T (4,2) = 6 because there are exactly 6 partial isometries (on a 4-chain) of fix 2, namely: (1,2)-->(1,2); (2,3)-->(2,3); (3,4)-->(3,4); (1,3)-->(1,3); (2,4)-->(2,4); (1,4)-->(1,4) - the mappings are coordinate-wise.

...1.

...1....1.

...4....2....1.

..12....6....3....1.

..38...10....6....4....1.

..90...26...10...10....5....1.

.220...42...15...20...15....6....1.

.460..106...21...35...35...21....7....1.

1018..170...28...56...70...56...28....8....1.

2022..426...36...84..126..126...84...36....9....1.

4304..682...45..120..210..252..210..120...45...10....1.

MAPLE

A183159 := proc(n) nh := floor(n/2) ; if type(n, 'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc:

A061547 := proc(n) 3*2^n/8 +(-2)^n/24 - 2/3; end proc:

A183158 := proc(n, k) if k = 0 then A183159(n) ; elif k = 1 then A061547(n+1) ; else binomial(n, k) ; end if; end proc: # R. J. Mathar, Jan 06 2011

MATHEMATICA

T[n_, 0] := (51*2^n + (-2)^n - 40)/12 - n*(n + 3);

T[n_, 1] := (9*2^n + (-1)^(n+1)*2^n - 8)/12;

T[n_, k_] := Binomial[n, k];

Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Nov 22 2017 *)

CROSSREFS

Cf. A183156 (row sums).

Sequence in context: A075397 A049429 A328647 * A174005 A152818 A302235

Adjacent sequences:  A183155 A183156 A183157 * A183159 A183160 A183161

KEYWORD

nonn,tabl

AUTHOR

Abdullahi Umar, Dec 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:31 EST 2019. Contains 329850 sequences. (Running on oeis4.)