login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183159
The number of partial isometries (of an n-chain) of fix zero (fix of alpha = 0). Equivalently, the number of partial derangement isometries (of an n-chain).
3
1, 1, 4, 12, 38, 90, 220, 460, 1018, 2022, 4304, 8376, 17566, 33922, 70756, 136260, 283682, 545790, 1135576, 2184112, 4543366, 8737626, 18174764, 34951932, 72700618, 139809430, 290804320, 559239720, 1163219438
OFFSET
0,3
FORMULA
a(2n) = (13*4^n-12*n^2-18*n-10)/3, n>=0.
a(2n+1) = (25*4^n-12*n^2-30*n-22)/3, n>=0.
a(n) = A183158(n,0).
G.f.: ( 1-2*x-3*x^4+10*x^3 ) / ( (2*x-1)*(2*x+1)*(x-1)^3 ). - Joerg Arndt, Dec 30 2010
a(n) = (51*2^n+(-2)^n-40)/12-n*(n+3). - Jean-François Alcover, Nov 22 2017
EXAMPLE
a(2) = 4 because there are exactly 4 partial derangement isometries (on a 2-chain) , namely: empty map; 1-->2; 2-->1; (1,2)-->(2,1). a(3) = 12 because there are exactly 12 partial isometries (on a 3-chain) namely: empty map; 1-->2; 1-->3; 2-->1; 2-->3; 3-->1; 3-->2; (1,2)-->(2,1); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(3,2); (1,3)-->(3,1) - the mappings are coordinate-wise.
MAPLE
A183159 := proc(n) nh := floor(n/2) ; if type(n, 'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc:
seq(A183159(n), n=0..50) ; # R. J. Mathar, Jan 06 2011
MATHEMATICA
LinearRecurrence[{3, 1, -11, 12, -4}, {1, 1, 4, 12, 38}, 30] (* Harvey P. Dale, Dec 06 2015 *)
a[n_] := (51*2^n+(-2)^n-40)/12-n*(n+3); Array[a, 29, 0] (* Jean-François Alcover, Nov 22 2017 *)
CROSSREFS
Cf. A183158.
Sequence in context: A149323 A024590 A189499 * A369682 A289809 A014345
KEYWORD
nonn
AUTHOR
Abdullahi Umar, Dec 28 2010
STATUS
approved