Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Apr 14 2024 03:47:12
%S 1,1,4,12,38,90,220,460,1018,2022,4304,8376,17566,33922,70756,136260,
%T 283682,545790,1135576,2184112,4543366,8737626,18174764,34951932,
%U 72700618,139809430,290804320,559239720,1163219438
%N The number of partial isometries (of an n-chain) of fix zero (fix of alpha = 0). Equivalently, the number of partial derangement isometries (of an n-chain).
%H R. Kehinde and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.2558 [math.GR], 2011.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-11,12,-4).
%F a(2n) = (13*4^n-12*n^2-18*n-10)/3, n>=0.
%F a(2n+1) = (25*4^n-12*n^2-30*n-22)/3, n>=0.
%F a(n) = A183158(n,0).
%F G.f.: ( 1-2*x-3*x^4+10*x^3 ) / ( (2*x-1)*(2*x+1)*(x-1)^3 ). - _Joerg Arndt_, Dec 30 2010
%F a(n) = (51*2^n+(-2)^n-40)/12-n*(n+3). - _Jean-François Alcover_, Nov 22 2017
%e a(2) = 4 because there are exactly 4 partial derangement isometries (on a 2-chain) , namely: empty map; 1-->2; 2-->1; (1,2)-->(2,1). a(3) = 12 because there are exactly 12 partial isometries (on a 3-chain) namely: empty map; 1-->2; 1-->3; 2-->1; 2-->3; 3-->1; 3-->2; (1,2)-->(2,1); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(3,2); (1,3)-->(3,1) - the mappings are coordinate-wise.
%p A183159 := proc(n) nh := floor(n/2) ; if type(n,'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc:
%p seq(A183159(n),n=0..50) ; # _R. J. Mathar_, Jan 06 2011
%t LinearRecurrence[{3,1,-11,12,-4},{1,1,4,12,38},30] (* _Harvey P. Dale_, Dec 06 2015 *)
%t a[n_] := (51*2^n+(-2)^n-40)/12-n*(n+3); Array[a, 29, 0] (* _Jean-François Alcover_, Nov 22 2017 *)
%Y Cf. A183158.
%K nonn
%O 0,3
%A _Abdullahi Umar_, Dec 28 2010