The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014345 Exponential convolution of primes with themselves. 7
 4, 12, 38, 118, 362, 1082, 3166, 8910, 24426, 64226, 165262, 413418, 1021362, 2490686, 6009150, 14401410, 34098042, 80281962, 187356750, 432549154, 992941250, 2256712462, 5088826238, 11408805862, 25425739346, 56383362854, 124565557898, 274390550594 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^2. - Ilya Gutkovskiy, Mar 10 2018 a(n) = Sum_{j=0..n} binomial(n,j)*prime(j+1)*prime(n-j+1). - G. C. Greubel, Jun 07 2019 MAPLE a:= proc(n) option remember; (p-> add(       p(j+1)*p(n-j+1)*binomial(n, j), j=0..n))(ithprime)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018 MATHEMATICA a[n_] := Sum[Prime[j + 1] Prime[n - j + 1] Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, from Maple *) PROG (MAGMA) [&+[NthPrime(k+1)*NthPrime(n-k+1)*Binomial(n, k): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Jun 07 2019 (PARI) {a(n) = sum(j=0, n, binomial(n, j)*prime(j+1)*prime(n-j+1))}; \\ G. C. Greubel, Jun 07 2019 (Sage) [sum(binomial(n, j)*nth_prime(j+1)*nth_prime(n-j+1) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2019 CROSSREFS Cf. A000040, A014347, A014352. Sequence in context: A189499 A183159 A289809 * A006192 A149324 A149325 Adjacent sequences:  A014342 A014343 A014344 * A014346 A014347 A014348 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)