login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289809 p-INVERT of (1,2,1,3,1,4,1,5,...) (A133622), where p(S) = 1 - S - S^2. 2
1, 4, 12, 38, 114, 354, 1076, 3311, 10120, 31043, 95044, 291284, 892242, 2733804, 8375092, 25659298, 78610859, 240840496, 737856017, 2260561368, 6925635380, 21217961710, 65005083598, 199154984626, 610147638720, 1869298875531, 5726938575936, 17545523113507 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x + ^2c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 7, 1, -9, -3, 5, 1, -1)

FORMULA

G.f.: (1 + 3 x + x^2 - 3 x^3 - 3 x^4 + x^5 + x^6)/(1 - x - 7 x^2 - x^3 +

9 x^4 + 3 x^5 - 5 x^6 - x^7 + x^8).

a(n) = a(n-1) + 7*a(n-2) + a(n-3) - 9*a(n-4) - 3*a(n-5) + 5*a(n-6) + a(n-7) - a(n-8)..

MATHEMATICA

z = 60; s = x (1 + 2 x - x^2 - x^3)/(1 - x^2)^2; p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A133622 *)

u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289809 *)

CROSSREFS

Cf. A133622, A289780.

Sequence in context: A024590 A189499 A183159 * A014345 A006192 A149324

Adjacent sequences:  A289806 A289807 A289808 * A289810 A289811 A289812

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 12:58 EDT 2021. Contains 343135 sequences. (Running on oeis4.)