login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369682
Expansion of g.f. A(x) satisfying Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^k + A(x)) = theta_2(x^(1/2)) / x^(1/8).
3
1, 4, 12, 38, 112, 332, 972, 2818, 8098, 23096, 65418, 184194, 516080, 1440334, 4008442, 11135682, 30912896, 85835538, 238601354, 664447912, 1854592214, 5189848462, 14561237108, 40954656118, 115428662380, 325847049200, 920772219740, 2602948470362, 7356994944096, 20779322594048
OFFSET
0,2
COMMENTS
Note: theta_2(x^(1/2)) / x^(1/8) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) - see A089799.
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^k + A(x)) = Sum_{n=-oo..+oo} x^(n*(n+1)/2).
(2) Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) / Product_{k=1..n} (1 + x^k*A(x)) = x * Sum_{n=-oo..+oo} x^(n*(n+1)/2).
(3) theta_2(x^(1/2))/x^(1/8) = (1 + A(x))/(1 + F(1)), where F(n) = x*(x^n + A(x))/(1 - x*(x^n + A(x)) + F(n+1)), a continued fraction.
(4) x * theta_2(x^(1/2))/x^(1/8) = 1/(1 + F(1)), where F(n) = x^(n-1)/(1 - x^(n-1) + x^n*A + (1 + x^n*A) * F(n+1)), a continued fraction.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 12*x^2 + 38*x^3 + 112*x^4 + 332*x^5 + 972*x^6 + 2818*x^7 + 8098*x^8 + 23096*x^9 + 65418*x^10 + 184194*x^11 + 516080*x^12 + ...
By definition, A = A(x) satisfies the sum of products
theta_2(x^(1/2))/x^(1/8) = (1 + A) - x*(1 + A)*(x + A) + x^2*(1 + A)*(x + A)*(x^2 + A) - x^3*(1 + A)*(x + A)*(x^2 + A)*(x^3 + A) + x^4*(1 + A)*(x + A)*(x^2 + A)*(x^3 + A)*(x^4 + A) -+ ...
also, A = A(x) satisfies another sum of products
x*theta_2(x^(1/2))/x^(1/8) = 1 - 1/(1 + x*A) + x/((1 + x*A)*(1 + x^2*A)) - x^3/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)) + x^6/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)) - x^10/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)*(1 + x^5*A)) +- ...
Further, A = A(x) satisfies the continued fraction given by
theta_2(x^(1/2))/x^(1/8) = (1 + A)/(1 + x*(x + A)/(1 - x*(x + A) + x*(x^2 + A)/(1 - x*(x^2 + A) + x*(x^3 + A)/(1 - x*(x^3 + A) + x*(x^4 + A)/(1 - x*(x^4 + A) + x*(x^5 + A)/(1 - x*(x^5 + A) + ...))))))
where theta_2(x^(1/2))/x^(1/8) = 2 + 2*x + 2*x^3 + 2*x^6 + 2*x^10 + 2*x^15 + 2*x^21 + ... + 2*x^(n*(n+1)/2) + ...
PROG
(PARI) {a(n) = my(A=[1], M = sqrtint(2*n)+1); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=-M, M, x^(n*(n+1)/2) ) - sum(n=0, #A, (-1)^n * x^n * prod(k=0, n, x^k + Ser(A)) ), #A-1) ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A369683, A369684, A089799 (theta_2).
Sequence in context: A024590 A189499 A183159 * A289809 A014345 A006192
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2024
STATUS
approved