login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369681
a(n) = Product_{k=0..n} (4^k + 5^(n-k)).
1
2, 30, 3978, 4987710, 58712437962, 6601051349841150, 7017151861981535193738, 70966047508527496843460412990, 6820716704126571481897874317127918922, 6205644698427009393117687864650447521113942270, 53916867047490616763228279441645027173409633988839675658
OFFSET
0,1
COMMENTS
For p > 1, q > 1, limit_{n->oo} ( Product_{k=0..n} (p^k + q^(n-k)) )^(1/n^2) = exp((1/2) * (log(p)^2 + log(p)*log(q) + log(q)^2) / log(p*q)); formula due to Vaclav Kotesovec (cf. A369680).
FORMULA
a(n) = Product_{k=0..n} (4^k + 5^(n-k)).
a(n) = 20^(n*(n+1)/2) * Product_{k=0..n} (1/4^k + 1/5^(n-k)).
a(n) = 5^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/20^k).
a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 5^n/20^k).
a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 20^k).
a(n) = 5^(-n*(n+1)/2) * Product_{k=0..n} (5^n + 20^k).
Limit_{n->oo} a(n)^(1/n^2) = exp((1/2) * (log(4)^2 + log(4)*log(5) + log(5)^2) / log(20)) = 3.0816872899745614612763875038173884057052077... [from a formula by Vaclav Kotesovec].
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 5)*(4 + 1) = 30;
a(2) = (1 + 5^2)*(4 + 5)*(4^2 + 1) = 3978;
a(3) = (1 + 5^3)*(4 + 5^2)*(4^2 + 5)*(4^3 + 1) = 4987710;
a(4) = (1 + 5^4)*(4 + 5^3)*(4^2 + 5^2)*(4^3 + 5)*(4^4 + 1) = 58712437962;
a(5) = (1 + 5^5)*(4 + 5^4)*(4^2 + 5^3)*(4^3 + 5^2)*(4^4 + 5)*(4^5 + 1) = 6601051349841150;
...
RELATED SERIES.
Sum_{n>=0} Product_{k=0..n} (1/4^k + 1/5^(n-k)) = 2 + 30/20 + 3978/20^3 + 4987710/20^6 + 58712437962/20^10 + 6601051349841150/20^15 + ... + a(n)/20^(n*(n+1)/2) + ... = 4.0811214259450988699292249336017494522520...
PROG
(PARI) {a(n) = prod(k=0, n, 4^k + 5^(n-k))}
for(n=0, 15, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2024
STATUS
approved