login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369683
Expansion of g.f. A(x) satisfying Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^(2*k+1) + A(x)) = theta_3(x).
3
1, 2, 4, 8, 19, 40, 86, 181, 383, 811, 1709, 3598, 7554, 15839, 33158, 69319, 144731, 301813, 628727, 1308487, 2720908, 5653743, 11740260, 24365703, 50544832, 104810967, 217270721, 450287996, 933043086, 1933125817, 4004865745, 8296690701, 17188106646, 35609996584
OFFSET
0,2
COMMENTS
Note: theta_3(x) = Sum_{n=-oo..+oo} x^(n^2) - see A000122.
a(n+1)/a(n) tends to 2.07474... - Vaclav Kotesovec, Feb 05 2024
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^(2*k+1) + A(x)) = Sum_{n=-oo..+oo} x^(n^2).
(2) Sum_{n>=0} (-1)^n * x^(n*(n+1)) / Product_{k=0..n} (1 + x^(2*k+1)*A(x)) = 1 - x * Sum_{n=-oo..+oo} (-1)^n * x^(n^2).
(3) theta_3(x) = (x + A(x))/(1 + F(1)), where F(n) = x*(x^(2*n+1) + A(x))/(1 - x*(x^(2*n+1) + A(x)) + F(n+1)), a continued fraction.
(4) 1 - x*theta_3(x) = 1/((1 + x*A(x))*(1 + F(1))), where F(n) = x^(2*n) / (1 - x^(2*n) + x^(2*n+1)*A + (1 + x^(2*n+1)*A)*F(n+1)), a continued fraction.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 19*x^4 + 40*x^5 + 86*x^6 + 181*x^7 + 383*x^8 + 811*x^9 + 1709*x^10 + 3598*x^11 + 7554*x^12 + ...
By definition, A = A(x) satisfies the sum of products
theta_3(x) = (x + A) - x*(x + A)*(x^3 + A) + x^2*(x + A)*(x^3 + A)*(x^5 + A) - x^3*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A) + x^4*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A)*(x^9 + A) -+ ...
also, A = A(x) satisfies another sum of products
1 - x*theta_3(x) = 1/(1 + x*A) - x^2/((1 + x*A)*(1 + x^3*A)) + x^6/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)) - x^12/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)*(1 + x^7*A)) + x^20/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)*(1 + x^7*A)*(1 + x^9*A)) + ...
Further, A = A(x) satisfies the continued fraction given by
theta_3(x) = (x + A)/(1 + x*(x^3 + A)/(1 - x*(x^3 + A) + x*(x^5 + A)/(1 - x*(x^5 + A) + x*(x^7 + A)/(1 - x*(x^7 + A) + x*(x^9 + A)/(1 - x*(x^9 + A) + x*(x^11 + A)/(1 - ...))))))
where theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + 2*x^36 + ... + 2*x^(n^2) + ...
PROG
(PARI) {a(n) = my(A=[1], M = sqrtint(n)+1); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=-M, M, x^(n^2) ) - sum(n=0, #A, (-1)^n * x^n * prod(k=0, n, x^(2*k+1) + Ser(A)) ), #A-1) ); H=A; A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A369684, A369682, A369672, A000122 (theta_3).
Sequence in context: A018306 A139784 A247235 * A261663 A199694 A037444
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2024
STATUS
approved