Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 05 2024 04:29:03
%S 1,2,4,8,19,40,86,181,383,811,1709,3598,7554,15839,33158,69319,144731,
%T 301813,628727,1308487,2720908,5653743,11740260,24365703,50544832,
%U 104810967,217270721,450287996,933043086,1933125817,4004865745,8296690701,17188106646,35609996584
%N Expansion of g.f. A(x) satisfying Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^(2*k+1) + A(x)) = theta_3(x).
%C Note: theta_3(x) = Sum_{n=-oo..+oo} x^(n^2) - see A000122.
%C a(n+1)/a(n) tends to 2.07474... - _Vaclav Kotesovec_, Feb 05 2024
%H Paul D. Hanna, <a href="/A369683/b369683.txt">Table of n, a(n) for n = 0..361</a>
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
%F (1) Sum_{n>=0} (-1)^n * x^n * Product_{k=0..n} (x^(2*k+1) + A(x)) = Sum_{n=-oo..+oo} x^(n^2).
%F (2) Sum_{n>=0} (-1)^n * x^(n*(n+1)) / Product_{k=0..n} (1 + x^(2*k+1)*A(x)) = 1 - x * Sum_{n=-oo..+oo} (-1)^n * x^(n^2).
%F (3) theta_3(x) = (x + A(x))/(1 + F(1)), where F(n) = x*(x^(2*n+1) + A(x))/(1 - x*(x^(2*n+1) + A(x)) + F(n+1)), a continued fraction.
%F (4) 1 - x*theta_3(x) = 1/((1 + x*A(x))*(1 + F(1))), where F(n) = x^(2*n) / (1 - x^(2*n) + x^(2*n+1)*A + (1 + x^(2*n+1)*A)*F(n+1)), a continued fraction.
%e G.f.: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 19*x^4 + 40*x^5 + 86*x^6 + 181*x^7 + 383*x^8 + 811*x^9 + 1709*x^10 + 3598*x^11 + 7554*x^12 + ...
%e By definition, A = A(x) satisfies the sum of products
%e theta_3(x) = (x + A) - x*(x + A)*(x^3 + A) + x^2*(x + A)*(x^3 + A)*(x^5 + A) - x^3*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A) + x^4*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A)*(x^9 + A) -+ ...
%e also, A = A(x) satisfies another sum of products
%e 1 - x*theta_3(x) = 1/(1 + x*A) - x^2/((1 + x*A)*(1 + x^3*A)) + x^6/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)) - x^12/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)*(1 + x^7*A)) + x^20/((1 + x*A)*(1 + x^3*A)*(1 + x^5*A)*(1 + x^7*A)*(1 + x^9*A)) + ...
%e Further, A = A(x) satisfies the continued fraction given by
%e theta_3(x) = (x + A)/(1 + x*(x^3 + A)/(1 - x*(x^3 + A) + x*(x^5 + A)/(1 - x*(x^5 + A) + x*(x^7 + A)/(1 - x*(x^7 + A) + x*(x^9 + A)/(1 - x*(x^9 + A) + x*(x^11 + A)/(1 - ...))))))
%e where theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + 2*x^36 + ... + 2*x^(n^2) + ...
%o (PARI) {a(n) = my(A=[1], M = sqrtint(n)+1); for(i=1,n, A = concat(A,0);
%o A[#A] = polcoeff( sum(n=-M,M, x^(n^2) ) - sum(n=0,#A, (-1)^n * x^n * prod(k=0,n, x^(2*k+1) + Ser(A)) ), #A-1) ); H=A; A[n+1]}
%o for(n=0,40, print1(a(n),", "))
%Y Cf. A369684, A369682, A369672, A000122 (theta_3).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 04 2024