login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369672
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x).
3
1, -4, 19, -100, 569, -3416, 21302, -136636, 895572, -5971096, 40366463, -276036720, 1905940182, -13269019988, 93040431283, -656472509864, 4657492107245, -33205607204468, 237777067846451, -1709374453370956, 12332468208675821, -89262196983781332, 647988910138661556
OFFSET
1,2
COMMENTS
Note: theta_3(x) = Sum_{n=-oo..+oo} x^(n^2) - see A000122.
Congruences:
(C.1) a(2*n) == 0 (mod 4) for n >= 1.
(C.2) a(n) == A369671(n) (mod 4) for n >= 1.
(C.3) a(2*n)/4 == -A369671(2*n)/4 (mod 4) for n >= 1.
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = Sum_{n=-oo..+oo} x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 4*A(x))^(n-1) = Sum_{n=-oo..+oo} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 4*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^n = Sum_{n=-oo..+oo} x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^(n+1) = Sum_{n=-oo..+oo} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 4*x^n*A(x))^n = 0.
a(n) ~ c * (-1)^(n+1) * d^n / n^(3/2), where d = 7.7471235933114571108403244715948697607... and c = 0.26329435412874059034137968338302672... - Vaclav Kotesovec, Feb 03 2024
EXAMPLE
G.f.: A(x) = x - 4*x^2 + 19*x^3 - 100*x^4 + 569*x^5 - 3416*x^6 + 21302*x^7 - 136636*x^8 + 895572*x^9 - 5971096*x^10 + 40366463*x^11 - 276036720*x^12 + ...
where Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x), and
theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + ... + x^(n^2) + ...
RELATED SERIES.
When we break up the doubly infinite sum into the following parts
P = Sum_{n>=0} (-1)^n * (x^n - 4*A(x))^n = 1 + 3*x + 4*x^3 - 15*x^4 + 92*x^5 - 528*x^6 + 3196*x^7 - 20032*x^8 + 128819*x^9 - 845312*x^10 + 5638568*x^11 - 38122176*x^12 + ...
N = Sum_{n>=1} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^n = -x - 4*x^3 + 17*x^4 - 92*x^5 + 528*x^6 - 3196*x^7 + 20032*x^8 - 128817*x^9 + 845312*x^10 - 5638568*x^11 + 38122176*x^12 + ...
we see that the sum equals P + N = theta_3(x).
SPECIAL VALUES.
(V.1) A(exp(-Pi)) = 0.036996905719511834010608252452763733693844226179196126014832...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) - 4*A(exp(-Pi)))^n = Pi^(1/4)/gamma(3/4) = 1.0864348112133080...
(V.2) A(exp(-2*Pi)) = 0.0018536158947374219405603135305712038712234615914707006019...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) - 4*A(exp(-2*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(2 + sqrt(2))/2 = 1.0037348854877390...
(V.3) A(exp(-3*Pi)) = 0.0000806734779029429093753810781078431328279003228392603227...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-3*n*Pi) - 4*A(exp(-3*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(1 + sqrt(3))/(108)^(1/8) = 1.000161399035140...
(V.4) A(exp(-4*Pi)) = 0.0000034872937107879617892620501277220047637185282553554945...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-4*n*Pi) - 4*A(exp(-4*Pi)))^n = Pi^(1/4)/gamma(3/4) * (2 + 8^(1/4))/4 = 1.000161399035140...
(V.5) A(exp(-5*Pi)) = 0.0000001507016366950287572418174619564191722052174968450159...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-5*n*Pi) - 4*A(exp(-5*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt((2 + sqrt(5))/5) = 1.0000003014034550...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); M=sqrtint(#A+4);
A[#A] = polcoeff( (sum(n=-M, M, x^(n^2)) - sum(n=-#A, #A, (-1)^n * (x^n - 4*x*Ser(A))^n) )/4, #A); ); A[n]}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); M=sqrtint(#A+4);
A[#A] = polcoeff( (sum(n=-M, M, x^(n^2)) - sum(n=-#A, #A, (-1)^n * x^(n^2)/(1 - 4*x^(n+1)*Ser(A))^n) )/4, #A); ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A369671 (dual), A000122 (theta_3), A355868.
Sequence in context: A083882 A007564 A218185 * A086624 A307121 A261490
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 03 2024
STATUS
approved