login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x).
3

%I #16 Feb 03 2024 22:49:32

%S 1,-4,19,-100,569,-3416,21302,-136636,895572,-5971096,40366463,

%T -276036720,1905940182,-13269019988,93040431283,-656472509864,

%U 4657492107245,-33205607204468,237777067846451,-1709374453370956,12332468208675821,-89262196983781332,647988910138661556

%N Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x).

%C Note: theta_3(x) = Sum_{n=-oo..+oo} x^(n^2) - see A000122.

%C Congruences:

%C (C.1) a(2*n) == 0 (mod 4) for n >= 1.

%C (C.2) a(n) == A369671(n) (mod 4) for n >= 1.

%C (C.3) a(2*n)/4 == -A369671(2*n)/4 (mod 4) for n >= 1.

%H Paul D. Hanna, <a href="/A369672/b369672.txt">Table of n, a(n) for n = 1..401</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = Sum_{n=-oo..+oo} x^(n^2).

%F (2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 4*A(x))^(n-1) = Sum_{n=-oo..+oo} x^(n^2).

%F (3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 4*A(x))^n = 0.

%F (4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^n = Sum_{n=-oo..+oo} x^(n^2).

%F (5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^(n+1) = Sum_{n=-oo..+oo} x^(n^2).

%F (6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 4*x^n*A(x))^n = 0.

%F a(n) ~ c * (-1)^(n+1) * d^n / n^(3/2), where d = 7.7471235933114571108403244715948697607... and c = 0.26329435412874059034137968338302672... - _Vaclav Kotesovec_, Feb 03 2024

%e G.f.: A(x) = x - 4*x^2 + 19*x^3 - 100*x^4 + 569*x^5 - 3416*x^6 + 21302*x^7 - 136636*x^8 + 895572*x^9 - 5971096*x^10 + 40366463*x^11 - 276036720*x^12 + ...

%e where Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x), and

%e theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + ... + x^(n^2) + ...

%e RELATED SERIES.

%e When we break up the doubly infinite sum into the following parts

%e P = Sum_{n>=0} (-1)^n * (x^n - 4*A(x))^n = 1 + 3*x + 4*x^3 - 15*x^4 + 92*x^5 - 528*x^6 + 3196*x^7 - 20032*x^8 + 128819*x^9 - 845312*x^10 + 5638568*x^11 - 38122176*x^12 + ...

%e N = Sum_{n>=1} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^n = -x - 4*x^3 + 17*x^4 - 92*x^5 + 528*x^6 - 3196*x^7 + 20032*x^8 - 128817*x^9 + 845312*x^10 - 5638568*x^11 + 38122176*x^12 + ...

%e we see that the sum equals P + N = theta_3(x).

%e SPECIAL VALUES.

%e (V.1) A(exp(-Pi)) = 0.036996905719511834010608252452763733693844226179196126014832...

%e where Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) - 4*A(exp(-Pi)))^n = Pi^(1/4)/gamma(3/4) = 1.0864348112133080...

%e (V.2) A(exp(-2*Pi)) = 0.0018536158947374219405603135305712038712234615914707006019...

%e where Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) - 4*A(exp(-2*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(2 + sqrt(2))/2 = 1.0037348854877390...

%e (V.3) A(exp(-3*Pi)) = 0.0000806734779029429093753810781078431328279003228392603227...

%e where Sum_{n=-oo..+oo} (-1)^n * (exp(-3*n*Pi) - 4*A(exp(-3*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(1 + sqrt(3))/(108)^(1/8) = 1.000161399035140...

%e (V.4) A(exp(-4*Pi)) = 0.0000034872937107879617892620501277220047637185282553554945...

%e where Sum_{n=-oo..+oo} (-1)^n * (exp(-4*n*Pi) - 4*A(exp(-4*Pi)))^n = Pi^(1/4)/gamma(3/4) * (2 + 8^(1/4))/4 = 1.000161399035140...

%e (V.5) A(exp(-5*Pi)) = 0.0000001507016366950287572418174619564191722052174968450159...

%e where Sum_{n=-oo..+oo} (-1)^n * (exp(-5*n*Pi) - 4*A(exp(-5*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt((2 + sqrt(5))/5) = 1.0000003014034550...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); M=sqrtint(#A+4);

%o A[#A] = polcoeff( (sum(n=-M,M, x^(n^2)) - sum(n=-#A,#A, (-1)^n * (x^n - 4*x*Ser(A))^n) )/4, #A); ); A[n]}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); M=sqrtint(#A+4);

%o A[#A] = polcoeff( (sum(n=-M,M, x^(n^2)) - sum(n=-#A,#A, (-1)^n * x^(n^2)/(1 - 4*x^(n+1)*Ser(A))^n) )/4, #A); ); A[n]}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A369671 (dual), A000122 (theta_3), A355868.

%K sign

%O 1,2

%A _Paul D. Hanna_, Feb 03 2024