login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218185
Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 3).
0
0, 0, 1, 4, 19, 100, 566, 3384, 21107, 136084, 900674, 6087496, 41850366, 291766952, 2057964492, 14659421040, 105305580483, 761981900724, 5548736343434, 40632122219688, 299017702596554, 2210275626304248, 16403005547059508, 122169144755555088, 912887876722311406
OFFSET
0,4
FORMULA
Yildiz gives a g.f. (see Proposition 6.13).
G.f.: (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4.
a(n+1) = Sum_{i=1..n} (C(i-1)*2^i*C(n-i)) - C(n), n>0. a(0)=0, C(n)=A000108(n) - Catalan numbers. [Vladimir Kruchinin, Mar 20 2013]
Conjecture: n*(n-1)*(n-2)*a(n) -12*(2*n-5)*(n-1)*(n-2)*a(n-1) +4 *(n-2)*(52*n^2-312*n+465) *a(n-2) -48*(2*n-7)*(8*n^2-56*n+95)*a(n-3) +256*(n-5) *(2*n-7) *(2*n-9)*a(n-4)=0. - R. J. Mathar, Oct 08 2016
Let h(n) = Catalan(n)*(2^(n+1)-1-hypergeom([3/2,1-n],[+1/2-n], 2))/2 then a(n+1) = h(n) for n>=1. - Peter Luschny, Oct 08 2016
MAPLE
h := n -> (binomial(2*n, n)/(n+1))*(2^(n+1)-1-hypergeom([3/2, 1-n], [1/2-n], 2))/2:
a := n -> `if`(n<2, 0, simplify(h(n-1))):
seq(a(n), n=0..24); # Peter Luschny, Oct 08 2016
MATHEMATICA
Table[Boole[n > 1] (Sum[CatalanNumber[i - 1] 2^i*CatalanNumber[# - i], {i, 1, #}] - CatalanNumber@ # &[n - 1]), {n, 0, 24}] (* or *)
CoefficientList[Series[(-1 - Last@ # + Times @@ # + First@ # + 4 x)/4 &@ {Sqrt[1 - 4 x], Sqrt[1 - 8 x]}, {x, 0, 24}], x] (* Michael De Vlieger, Oct 08 2016 *)
PROG
(PARI) all_a(m) = {x= y+O(y^(m+1)); P = (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4; for (n=0, m, print1(polcoeff(P, n, y), ", ")); } \\ Michel Marcus, Feb 08 2013
(Maxima)
c(n):=binomial(2*n, n)/(n+1);
a(n):=sum(c(i-1)*2^i*c(n-i-1), i, 1, n-1)-c(n-1);
makelist(a(n), n, 2, 20); /* Vladimir Kruchinin, Mar 20 2013 */
CROSSREFS
Sequence in context: A177249 A083882 A007564 * A369672 A086624 A307121
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 23 2012
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
STATUS
approved