login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A218185
Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 3).
0
0, 0, 1, 4, 19, 100, 566, 3384, 21107, 136084, 900674, 6087496, 41850366, 291766952, 2057964492, 14659421040, 105305580483, 761981900724, 5548736343434, 40632122219688, 299017702596554, 2210275626304248, 16403005547059508, 122169144755555088, 912887876722311406
OFFSET
0,4
FORMULA
Yildiz gives a g.f. (see Proposition 6.13).
G.f.: (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4.
a(n+1) = Sum_{i=1..n} (C(i-1)*2^i*C(n-i)) - C(n), n>0. a(0)=0, C(n)=A000108(n) - Catalan numbers. [Vladimir Kruchinin, Mar 20 2013]
Conjecture: n*(n-1)*(n-2)*a(n) -12*(2*n-5)*(n-1)*(n-2)*a(n-1) +4 *(n-2)*(52*n^2-312*n+465) *a(n-2) -48*(2*n-7)*(8*n^2-56*n+95)*a(n-3) +256*(n-5) *(2*n-7) *(2*n-9)*a(n-4)=0. - R. J. Mathar, Oct 08 2016
Let h(n) = Catalan(n)*(2^(n+1)-1-hypergeom([3/2,1-n],[+1/2-n], 2))/2 then a(n+1) = h(n) for n>=1. - Peter Luschny, Oct 08 2016
MAPLE
h := n -> (binomial(2*n, n)/(n+1))*(2^(n+1)-1-hypergeom([3/2, 1-n], [1/2-n], 2))/2:
a := n -> `if`(n<2, 0, simplify(h(n-1))):
seq(a(n), n=0..24); # Peter Luschny, Oct 08 2016
MATHEMATICA
Table[Boole[n > 1] (Sum[CatalanNumber[i - 1] 2^i*CatalanNumber[# - i], {i, 1, #}] - CatalanNumber@ # &[n - 1]), {n, 0, 24}] (* or *)
CoefficientList[Series[(-1 - Last@ # + Times @@ # + First@ # + 4 x)/4 &@ {Sqrt[1 - 4 x], Sqrt[1 - 8 x]}, {x, 0, 24}], x] (* Michael De Vlieger, Oct 08 2016 *)
PROG
(PARI) all_a(m) = {x= y+O(y^(m+1)); P = (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4; for (n=0, m, print1(polcoeff(P, n, y), ", ")); } \\ Michel Marcus, Feb 08 2013
(Maxima)
c(n):=binomial(2*n, n)/(n+1);
a(n):=sum(c(i-1)*2^i*c(n-i-1), i, 1, n-1)-c(n-1);
makelist(a(n), n, 2, 20); /* Vladimir Kruchinin, Mar 20 2013 */
CROSSREFS
Sequence in context: A177249 A083882 A007564 * A369672 A086624 A307121
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 23 2012
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
STATUS
approved