login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 3).
0

%I #35 Oct 08 2016 10:10:03

%S 0,0,1,4,19,100,566,3384,21107,136084,900674,6087496,41850366,

%T 291766952,2057964492,14659421040,105305580483,761981900724,

%U 5548736343434,40632122219688,299017702596554,2210275626304248,16403005547059508,122169144755555088,912887876722311406

%N Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 3).

%H Volkan Yildiz, <a href="http://arxiv.org/abs/1205.5595">General combinatorical structure of truth tables of bracketed formulas connected by implication</a>, arXiv preprint arXiv:1205.5595 [math.CO], 2012.

%F Yildiz gives a g.f. (see Proposition 6.13).

%F G.f.: (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4.

%F a(n+1) = Sum_{i=1..n} (C(i-1)*2^i*C(n-i)) - C(n), n>0. a(0)=0, C(n)=A000108(n) - Catalan numbers. [_Vladimir Kruchinin_, Mar 20 2013]

%F Conjecture: n*(n-1)*(n-2)*a(n) -12*(2*n-5)*(n-1)*(n-2)*a(n-1) +4 *(n-2)*(52*n^2-312*n+465) *a(n-2) -48*(2*n-7)*(8*n^2-56*n+95)*a(n-3) +256*(n-5) *(2*n-7) *(2*n-9)*a(n-4)=0. - _R. J. Mathar_, Oct 08 2016

%F Let h(n) = Catalan(n)*(2^(n+1)-1-hypergeom([3/2,1-n],[+1/2-n], 2))/2 then a(n+1) = h(n) for n>=1. - _Peter Luschny_, Oct 08 2016

%p h := n -> (binomial(2*n,n)/(n+1))*(2^(n+1)-1-hypergeom([3/2,1-n],[1/2-n],2))/2:

%p a := n -> `if`(n<2, 0, simplify(h(n-1))):

%p seq(a(n), n=0..24); # _Peter Luschny_, Oct 08 2016

%t Table[Boole[n > 1] (Sum[CatalanNumber[i - 1] 2^i*CatalanNumber[# - i], {i, 1, #}] - CatalanNumber@ # &[n - 1]), {n, 0, 24}] (* or *)

%t CoefficientList[Series[(-1 - Last@ # + Times @@ # + First@ # + 4 x)/4 &@ {Sqrt[1 - 4 x], Sqrt[1 - 8 x]}, {x, 0, 24}], x] (* _Michael De Vlieger_, Oct 08 2016 *)

%o (PARI) all_a(m) = {x= y+O(y^(m+1)); P = (-1 - sqrt(1-8*x) + sqrt(1-8*x)*sqrt(1-4*x) + sqrt(1-4*x) + 4*x)/4; for (n=0, m, print1(polcoeff(P, n, y), ", "));} \\ _Michel Marcus_, Feb 08 2013

%o (Maxima)

%o c(n):=binomial(2*n,n)/(n+1);

%o a(n):=sum(c(i-1)*2^i*c(n-i-1),i,1,n-1)-c(n-1);

%o makelist(a(n),n,2,20); /* _Vladimir Kruchinin_, Mar 20 2013 */

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Oct 23 2012

%E More terms from _Michel Marcus_, Feb 08 2013