The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000187 Generalized Euler numbers, c(5,n). (Formerly M2153 N0858) 8
 2, 30, 3522, 1066590, 604935042, 551609685150, 737740947722562, 1360427147514751710, 3308161927353377294082, 10256718523496425979562270, 39490468691102039103925777602, 184856411587530526077816051412830, 1033888847501229495999134528615701122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Sean A. Irvine, Table of n, a(n) for n = 0..250 D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694. D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699. D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy] FORMULA From the Shanks paper: Consider the Dirichlet series L_a(s) = sum_{k>=0)} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers c_(a,n) are defined by L_a(2n+1)= (Pi/(2a))^(2n+1)*sqrt(a)* c(a,n)/ (2n)! for a > 1 and n = 0,1,2,... - Sean A. Irvine, Mar 26 2012 From Peter Bala, Nov 18 2020: (Start) a(n) = (-1)^n*10^(2*n)*( E(2*n,1/10) + E(2*n,3/10) ), where E(n,x) are the Euler polynomials - see A060096. Row 5 of A235605. G.f.: A(x) = 2*cos(x)*cos(3*x)/( 2*cos(x)*cos(4*x) - cos(3*x) ) = 2 + 30*x^2/2! + 3522*x^4/4! + .... Alternative forms: A(x) = (exp(i*x) + exp(3*i*x) + exp(7*i*x) + exp(9*i*x))/(1 + exp(10*i*x)); A(x) = (sqrt(5)/10)*( sec(x + Pi/5) + sec(x + 2*Pi/5) - sec(x + 3*Pi/5) - sec(x + 4*Pi/5) ). (End) a(n) = (2*n)!*[x^(2*n)](sec(5*x)*(cos(2*x) + cos(4*x))). - Peter Luschny, Nov 21 2021 a(n) ~ 2^(4*n + 2) * 5^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022 EXAMPLE a(3) = 1066590: L_5(7) = Sum_{n >= 0}( (-1)^n*( 1/(10*n+1)^7 + 1/(10*n+3)^7 + 1/(10*n+7)^7 + 1/(10*n+9)^7 ) = 1066590*( (1/6!)*sqrt(5)*(Pi/10)^7 ). - Peter Bala, Nov 18 2020 MAPLE seq((-1)^n*(10)^(2*n)*(euler(2*n, 1/10) + euler(2*n, 3/10)), n = 0..11); - Peter Bala, Nov 18 2020 egf := sec(5*x)*(cos(2*x) + cos(4*x)): ser := series(egf, x, 26): seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021 MATHEMATICA a0=5; nmax=20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2n+1)*Pi^(-2n-1)*(2n)!*a^(2n+1/2)*L[a, 2n+1, km] // Round; cc[km_] := cc[km] = Table[ c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[ km/2, km = 2km]]; A000187 = cc[km] (* Jean-François Alcover, Feb 05 2016 *) CROSSREFS Cf. A000192, A000490, A060096, A235605, A000320, A349265, A349264. Sequence in context: A220719 A359665 A030249 * A053851 A077521 A272445 Adjacent sequences: A000184 A000185 A000186 * A000188 A000189 A000190 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 18:14 EST 2023. Contains 367461 sequences. (Running on oeis4.)