login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289807
p-INVERT of (1,2,2,3,3,4,4,...) (A080513), where p(S) = 1 - S - S^2.
2
1, 4, 13, 42, 133, 424, 1348, 4291, 13653, 43449, 138261, 439979, 1400101, 4455420, 14178073, 45117606, 143573662, 456881476, 1453892534, 4626590576, 14722780217, 46850970327, 149089600359, 474434334814, 1509749422360, 4804338875098, 15288412556740
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
FORMULA
G.f.: (1 + x - x^2)/(1 - 3 x - 2 x^2 + 5 x^3 - x^4 - 2 x^5 + x^6).
a(n) = 3*a(n-1) + 2*a(n-2) - 5*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
MATHEMATICA
z = 60; s = x (1 + x - x^2)/((1 - x)^2*(1 + x)); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A080513 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289807 *)
LinearRecurrence[{3, 2, -5, 1, 2, -1}, {1, 4, 13, 42, 133, 424}, 30] (* Harvey P. Dale, Aug 20 2024 *)
CROSSREFS
Sequence in context: A000640 A199842 A192910 * A022029 A010919 A277667
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved