The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2. 82
 1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453). Guide to p-INVERT sequences using p(S) = 1 - S - S^2: t(A000012) = t(1,1,1,1,1,1,1,...)    = A001906 t(A000290) = t(1,4,9,16,25,36,...)   = A289779 t(A000027) = t(1,2,3,4,5,6,7,8,...)  = A289780 t(A000045) = t(1,2,3,5,8,13,21,...)  = A289781 t(A000032) = t(2,1,3,4,7,11,14,...)  = A289782 t(A000244) = t(1,3,9,27,81,243,...)  = A289783 t(A000302) = t(1,4,16,64,256,...)    = A289784 t(A000351) = t(1,5,25,125,625,...)   = A289785 t(A005408) = t(1,3,5,7,9,11,13,...)  = A289786 t(A005843) = t(2,4,6,8,10,12,14,...) = A289787 t(A016777) = t(1,4,7,10,13,16,...)   = A289789 t(A016789) = t(2,5,8,11,14,17,...)   = A289790 t(A008585) = t(3,6,9,12,15,18,...)   = A289795 t(A000217) = t(1,3,6,10,15,21,...)   = A289797 t(A000225) = t(1,3,7,15,31,63,...)   = A289798 t(A000578) = t(1,8,27,64,625,...)    = A289799 t(A000984) = t(1,2,6,20,70,252,...)  = A289800 t(A000292) = t(1,4,10,20,35,56,...)  = A289801 t(A002620) = t(1,2,4,6,9,12,16,...)  = A289802 t(A001906) = t(1,3,8,21,55,144,...)  = A289803 t(A001519) = t(1,1,2,5,13,34,...)    = A289804 t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805 t(A008619) = t(1,1,2,2,3,3,4,4,...)  = A289806 t(A080513) = t(1,2,2,3,3,4,4,5,...)  = A289807 t(A133622) = t(1,2,1,3,1,4,1,5,...)  = A289809 t(A000108) = t(1,1,2,5,14,42,...)    = A081696 t(A081696) = t(1,1,3,9,29,97,...)    = A289810 t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843 t(A175676) = t(1,0,0,2,0,0,3,0,...)  = A289844 t(A079977) = t(1,0,1,0,2,0,3,...)    = A289845 t(A059841) = t(1,0,1,0,1,0,1,...)    = A289846 t(A000040) = t(2,3,5,7,11,13,...)    = A289847 t(A008578) = t(1,2,3,5,7,11,13,...)  = A289828 t(A000142) = t(1!, 2!, 3!, 4!, ...)  = A289924 t(A000201) = t(1,3,4,6,8,9,11,...)   = A289925 t(A001950) = t(2,5,7,10,13,15,...)   = A289926 t(A014217) = t(1,2,4,6,11,17,29,...) = A289927 t(A000045*) = t(0,1,1,2,3,5,...)     = A289975 (* indicates prepended 0's) t(A000045*) = t(0,0,1,1,2,3,5,...)   = A289976 t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977 t(A290990*) = t(0,1,2,3,4,5,...)     = A290990 t(A290990*) = t(0,0,1,2,3,4,5,...)   = A290991 t(A290990*) = t(0,0,01,2,3,4,5,...)  = A290992 LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5, -7, 5, -1) FORMULA G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4). a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4). EXAMPLE Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S. S(x) = x + 2x^2 + 3x^3 + 4x^4 + ... p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... ) - p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ... T(x) = 1 + 3x + 8x^2 + 21x^3 + ... t(s) = (1,3,8,21,...) = A001906. *** Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2. S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ... p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2 - p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ... T(x) = 1 + 4x + 14x^2 + 47x^3 + ... t(s) = (1,4,14,47,...) = A289780. MATHEMATICA z = 60; s = x/(1 - x)^2; p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *) PROG (PARI) x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017 (GAP) P:=[1, 4, 14, 47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017 CROSSREFS Cf. A000027. Sequence in context: A094789 A273714 A082574 * A320404 A137284 A228178 Adjacent sequences:  A289777 A289778 A289779 * A289781 A289782 A289783 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 20:36 EST 2021. Contains 340411 sequences. (Running on oeis4.)