The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4. 14
 1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k. With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005 The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011 Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 W. Chammam, F. Marcellán and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra Appl. (2011), in press. S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - N. J. A. Sloane, Dec 26 2012 László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2. Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3. Index entries for linear recurrences with constant coefficients, signature (5,-6,1). FORMULA a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1). a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014 a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012 a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013 MATHEMATICA f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *) LinearRecurrence[{5, -6, 1}, {1, 4, 14}, 50] (* Roman Witula, Aug 09 2012 *) CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *) PROG (Magma) I:=[1, 4, 14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014 (PARI) Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014 CROSSREFS Cf. A094790, A080937, A005021. Sequence in context: A263622 A104487 A247210 * A273714 A082574 A289780 Adjacent sequences: A094786 A094787 A094788 * A094790 A094791 A094792 KEYWORD nonn,easy AUTHOR Herbert Kociemba, Jun 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 18:18 EDT 2023. Contains 363116 sequences. (Running on oeis4.)